Loading…

Different Molecular Mechanisms for Rho Family GTPase-dependent, Ca2+-independent Contraction of Smooth Muscle

Abnormal smooth muscle contraction may contribute to diseases such as asthma and hypertension. Alterations to myosin light chain kinase or phosphatase change the phosphorylation level of the 20-kDa myosin regulatory light chain (MRLC), increasing Ca2+ sensitivity and basal tone. One Rho family GTPas...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1998-09, Vol.273 (36), p.23433-23439
Main Authors: Van Eyk, Jennifer E., Arrell, D. Kent, Foster, D. Brian, Strauss, John D., Heinonen, Taisto Y.K., Furmaniak-Kazmierczak, Emilia, Côté, Graham P., Mak, Alan S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-f571a6a261483a3897ed27da9f416cb11a12f2d1e2de1af248bd1ab691dccbe73
cites cdi_FETCH-LOGICAL-c414t-f571a6a261483a3897ed27da9f416cb11a12f2d1e2de1af248bd1ab691dccbe73
container_end_page 23439
container_issue 36
container_start_page 23433
container_title The Journal of biological chemistry
container_volume 273
creator Van Eyk, Jennifer E.
Arrell, D. Kent
Foster, D. Brian
Strauss, John D.
Heinonen, Taisto Y.K.
Furmaniak-Kazmierczak, Emilia
Côté, Graham P.
Mak, Alan S.
description Abnormal smooth muscle contraction may contribute to diseases such as asthma and hypertension. Alterations to myosin light chain kinase or phosphatase change the phosphorylation level of the 20-kDa myosin regulatory light chain (MRLC), increasing Ca2+ sensitivity and basal tone. One Rho family GTPase-dependent kinase, Rho-associated kinase (ROK or p160ROCK) can induce Ca2+-independent contraction of Triton-skinned smooth muscle by phosphorylating MRLC and/or myosin light chain phosphatase. We show that another Rho family GTPase-dependent kinase, p21-activated protein kinase (PAK), induces Triton-skinned smooth muscle contracts independently of calcium to 62 ± 12% (n = 10) of the value observed in presence of calcium. Remarkably, PAK and ROK use different molecular mechanisms to achieve the Ca2+-independent contraction. Like ROK and myosin light chain kinase, PAK phosphorylates MRLC at serine 19 in vitro. However, PAK-induced contraction correlates with enhanced phosphorylation of caldesmon and desmin but not MRLC. The level of MRLC phosphorylation remains similar to that in relaxed muscle fibers (absence of GST-mPAK3 and calcium) even as the force induced by GST-mPAK3 increases from 26 to 70%. Thus, PAK uncouples force generation from MRLC phosphorylation. These data support a model of PAK-induced contraction in which myosin phosphorylation is at least complemented through regulation of thin filament proteins. Because ROK and PAK homologues are present in smooth muscle, they may work in parallel to regulate smooth muscle contraction.
doi_str_mv 10.1074/jbc.273.36.23433
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73862851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819750078</els_id><sourcerecordid>73862851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-f571a6a261483a3897ed27da9f416cb11a12f2d1e2de1af248bd1ab691dccbe73</originalsourceid><addsrcrecordid>eNp1kMtr3DAQh0VpSDePey8FHUouqTceybbs3MqmeUCWliaF3oQsjWoF29pKdkL--6rZJYdC5zIwvwfDR8h7yJeQi-LsodVLJviSV0vGC87fkAXkNc94CT_fkkWeM8gaVtbvyEGMD3maooF9st8IxkrRLMhw4azFgONE175HPfcq0DXqTo0uDpFaH-j3ztNLNbj-mV7df1MRM4MbHE0KfaIrxU4zN75e6MqPU1B6cn6k3tK7wfupo-s56h6PyJ5VfcTj3T4kPy6_3K-us9uvVzerz7eZLqCYMlsKUJViFRQ1V7xuBBomjGpsAZVuARQwywwgMwjKsqJuDai2asBo3aLgh-Rk27sJ_veMcZKDixr7Xo3o5ygFrytWl5CM-daog48xoJWb4AYVniXk8i9hmQjLRFjySr4QTpEPu-65HdC8BnZIk_5xq3fuV_fkAsrWed3h8G_N-daGicOjwyCjdjhqNCmiJ2m8-_8PfwA8KZdJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73862851</pqid></control><display><type>article</type><title>Different Molecular Mechanisms for Rho Family GTPase-dependent, Ca2+-independent Contraction of Smooth Muscle</title><source>ScienceDirect (Online service)</source><creator>Van Eyk, Jennifer E. ; Arrell, D. Kent ; Foster, D. Brian ; Strauss, John D. ; Heinonen, Taisto Y.K. ; Furmaniak-Kazmierczak, Emilia ; Côté, Graham P. ; Mak, Alan S.</creator><creatorcontrib>Van Eyk, Jennifer E. ; Arrell, D. Kent ; Foster, D. Brian ; Strauss, John D. ; Heinonen, Taisto Y.K. ; Furmaniak-Kazmierczak, Emilia ; Côté, Graham P. ; Mak, Alan S.</creatorcontrib><description>Abnormal smooth muscle contraction may contribute to diseases such as asthma and hypertension. Alterations to myosin light chain kinase or phosphatase change the phosphorylation level of the 20-kDa myosin regulatory light chain (MRLC), increasing Ca2+ sensitivity and basal tone. One Rho family GTPase-dependent kinase, Rho-associated kinase (ROK or p160ROCK) can induce Ca2+-independent contraction of Triton-skinned smooth muscle by phosphorylating MRLC and/or myosin light chain phosphatase. We show that another Rho family GTPase-dependent kinase, p21-activated protein kinase (PAK), induces Triton-skinned smooth muscle contracts independently of calcium to 62 ± 12% (n = 10) of the value observed in presence of calcium. Remarkably, PAK and ROK use different molecular mechanisms to achieve the Ca2+-independent contraction. Like ROK and myosin light chain kinase, PAK phosphorylates MRLC at serine 19 in vitro. However, PAK-induced contraction correlates with enhanced phosphorylation of caldesmon and desmin but not MRLC. The level of MRLC phosphorylation remains similar to that in relaxed muscle fibers (absence of GST-mPAK3 and calcium) even as the force induced by GST-mPAK3 increases from 26 to 70%. Thus, PAK uncouples force generation from MRLC phosphorylation. These data support a model of PAK-induced contraction in which myosin phosphorylation is at least complemented through regulation of thin filament proteins. Because ROK and PAK homologues are present in smooth muscle, they may work in parallel to regulate smooth muscle contraction.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.273.36.23433</identifier><identifier>PMID: 9722579</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Androstadienes - pharmacology ; Animals ; Calcium - metabolism ; Colon - physiology ; Guinea Pigs ; Intracellular Signaling Peptides and Proteins ; Muscle Contraction - physiology ; Muscle, Smooth - physiology ; Myosin-Light-Chain Kinase - metabolism ; Myosins - metabolism ; p21-Activated Kinases ; Protein-Serine-Threonine Kinases - metabolism ; rho-Associated Kinases ; Substrate Specificity ; Wortmannin</subject><ispartof>The Journal of biological chemistry, 1998-09, Vol.273 (36), p.23433-23439</ispartof><rights>1998 © 1998 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-f571a6a261483a3897ed27da9f416cb11a12f2d1e2de1af248bd1ab691dccbe73</citedby><cites>FETCH-LOGICAL-c414t-f571a6a261483a3897ed27da9f416cb11a12f2d1e2de1af248bd1ab691dccbe73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925819750078$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3535,27903,27904,45759</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9722579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Eyk, Jennifer E.</creatorcontrib><creatorcontrib>Arrell, D. Kent</creatorcontrib><creatorcontrib>Foster, D. Brian</creatorcontrib><creatorcontrib>Strauss, John D.</creatorcontrib><creatorcontrib>Heinonen, Taisto Y.K.</creatorcontrib><creatorcontrib>Furmaniak-Kazmierczak, Emilia</creatorcontrib><creatorcontrib>Côté, Graham P.</creatorcontrib><creatorcontrib>Mak, Alan S.</creatorcontrib><title>Different Molecular Mechanisms for Rho Family GTPase-dependent, Ca2+-independent Contraction of Smooth Muscle</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Abnormal smooth muscle contraction may contribute to diseases such as asthma and hypertension. Alterations to myosin light chain kinase or phosphatase change the phosphorylation level of the 20-kDa myosin regulatory light chain (MRLC), increasing Ca2+ sensitivity and basal tone. One Rho family GTPase-dependent kinase, Rho-associated kinase (ROK or p160ROCK) can induce Ca2+-independent contraction of Triton-skinned smooth muscle by phosphorylating MRLC and/or myosin light chain phosphatase. We show that another Rho family GTPase-dependent kinase, p21-activated protein kinase (PAK), induces Triton-skinned smooth muscle contracts independently of calcium to 62 ± 12% (n = 10) of the value observed in presence of calcium. Remarkably, PAK and ROK use different molecular mechanisms to achieve the Ca2+-independent contraction. Like ROK and myosin light chain kinase, PAK phosphorylates MRLC at serine 19 in vitro. However, PAK-induced contraction correlates with enhanced phosphorylation of caldesmon and desmin but not MRLC. The level of MRLC phosphorylation remains similar to that in relaxed muscle fibers (absence of GST-mPAK3 and calcium) even as the force induced by GST-mPAK3 increases from 26 to 70%. Thus, PAK uncouples force generation from MRLC phosphorylation. These data support a model of PAK-induced contraction in which myosin phosphorylation is at least complemented through regulation of thin filament proteins. Because ROK and PAK homologues are present in smooth muscle, they may work in parallel to regulate smooth muscle contraction.</description><subject>Androstadienes - pharmacology</subject><subject>Animals</subject><subject>Calcium - metabolism</subject><subject>Colon - physiology</subject><subject>Guinea Pigs</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle, Smooth - physiology</subject><subject>Myosin-Light-Chain Kinase - metabolism</subject><subject>Myosins - metabolism</subject><subject>p21-Activated Kinases</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>rho-Associated Kinases</subject><subject>Substrate Specificity</subject><subject>Wortmannin</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp1kMtr3DAQh0VpSDePey8FHUouqTceybbs3MqmeUCWliaF3oQsjWoF29pKdkL--6rZJYdC5zIwvwfDR8h7yJeQi-LsodVLJviSV0vGC87fkAXkNc94CT_fkkWeM8gaVtbvyEGMD3maooF9st8IxkrRLMhw4azFgONE175HPfcq0DXqTo0uDpFaH-j3ztNLNbj-mV7df1MRM4MbHE0KfaIrxU4zN75e6MqPU1B6cn6k3tK7wfupo-s56h6PyJ5VfcTj3T4kPy6_3K-us9uvVzerz7eZLqCYMlsKUJViFRQ1V7xuBBomjGpsAZVuARQwywwgMwjKsqJuDai2asBo3aLgh-Rk27sJ_veMcZKDixr7Xo3o5ygFrytWl5CM-daog48xoJWb4AYVniXk8i9hmQjLRFjySr4QTpEPu-65HdC8BnZIk_5xq3fuV_fkAsrWed3h8G_N-daGicOjwyCjdjhqNCmiJ2m8-_8PfwA8KZdJ</recordid><startdate>19980904</startdate><enddate>19980904</enddate><creator>Van Eyk, Jennifer E.</creator><creator>Arrell, D. Kent</creator><creator>Foster, D. Brian</creator><creator>Strauss, John D.</creator><creator>Heinonen, Taisto Y.K.</creator><creator>Furmaniak-Kazmierczak, Emilia</creator><creator>Côté, Graham P.</creator><creator>Mak, Alan S.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19980904</creationdate><title>Different Molecular Mechanisms for Rho Family GTPase-dependent, Ca2+-independent Contraction of Smooth Muscle</title><author>Van Eyk, Jennifer E. ; Arrell, D. Kent ; Foster, D. Brian ; Strauss, John D. ; Heinonen, Taisto Y.K. ; Furmaniak-Kazmierczak, Emilia ; Côté, Graham P. ; Mak, Alan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-f571a6a261483a3897ed27da9f416cb11a12f2d1e2de1af248bd1ab691dccbe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Androstadienes - pharmacology</topic><topic>Animals</topic><topic>Calcium - metabolism</topic><topic>Colon - physiology</topic><topic>Guinea Pigs</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle, Smooth - physiology</topic><topic>Myosin-Light-Chain Kinase - metabolism</topic><topic>Myosins - metabolism</topic><topic>p21-Activated Kinases</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>rho-Associated Kinases</topic><topic>Substrate Specificity</topic><topic>Wortmannin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Eyk, Jennifer E.</creatorcontrib><creatorcontrib>Arrell, D. Kent</creatorcontrib><creatorcontrib>Foster, D. Brian</creatorcontrib><creatorcontrib>Strauss, John D.</creatorcontrib><creatorcontrib>Heinonen, Taisto Y.K.</creatorcontrib><creatorcontrib>Furmaniak-Kazmierczak, Emilia</creatorcontrib><creatorcontrib>Côté, Graham P.</creatorcontrib><creatorcontrib>Mak, Alan S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Eyk, Jennifer E.</au><au>Arrell, D. Kent</au><au>Foster, D. Brian</au><au>Strauss, John D.</au><au>Heinonen, Taisto Y.K.</au><au>Furmaniak-Kazmierczak, Emilia</au><au>Côté, Graham P.</au><au>Mak, Alan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different Molecular Mechanisms for Rho Family GTPase-dependent, Ca2+-independent Contraction of Smooth Muscle</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1998-09-04</date><risdate>1998</risdate><volume>273</volume><issue>36</issue><spage>23433</spage><epage>23439</epage><pages>23433-23439</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Abnormal smooth muscle contraction may contribute to diseases such as asthma and hypertension. Alterations to myosin light chain kinase or phosphatase change the phosphorylation level of the 20-kDa myosin regulatory light chain (MRLC), increasing Ca2+ sensitivity and basal tone. One Rho family GTPase-dependent kinase, Rho-associated kinase (ROK or p160ROCK) can induce Ca2+-independent contraction of Triton-skinned smooth muscle by phosphorylating MRLC and/or myosin light chain phosphatase. We show that another Rho family GTPase-dependent kinase, p21-activated protein kinase (PAK), induces Triton-skinned smooth muscle contracts independently of calcium to 62 ± 12% (n = 10) of the value observed in presence of calcium. Remarkably, PAK and ROK use different molecular mechanisms to achieve the Ca2+-independent contraction. Like ROK and myosin light chain kinase, PAK phosphorylates MRLC at serine 19 in vitro. However, PAK-induced contraction correlates with enhanced phosphorylation of caldesmon and desmin but not MRLC. The level of MRLC phosphorylation remains similar to that in relaxed muscle fibers (absence of GST-mPAK3 and calcium) even as the force induced by GST-mPAK3 increases from 26 to 70%. Thus, PAK uncouples force generation from MRLC phosphorylation. These data support a model of PAK-induced contraction in which myosin phosphorylation is at least complemented through regulation of thin filament proteins. Because ROK and PAK homologues are present in smooth muscle, they may work in parallel to regulate smooth muscle contraction.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9722579</pmid><doi>10.1074/jbc.273.36.23433</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1998-09, Vol.273 (36), p.23433-23439
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_73862851
source ScienceDirect (Online service)
subjects Androstadienes - pharmacology
Animals
Calcium - metabolism
Colon - physiology
Guinea Pigs
Intracellular Signaling Peptides and Proteins
Muscle Contraction - physiology
Muscle, Smooth - physiology
Myosin-Light-Chain Kinase - metabolism
Myosins - metabolism
p21-Activated Kinases
Protein-Serine-Threonine Kinases - metabolism
rho-Associated Kinases
Substrate Specificity
Wortmannin
title Different Molecular Mechanisms for Rho Family GTPase-dependent, Ca2+-independent Contraction of Smooth Muscle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A18%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20Molecular%20Mechanisms%20for%20Rho%20Family%20GTPase-dependent,%20Ca2+-independent%20Contraction%20of%20Smooth%20Muscle&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Van%20Eyk,%20Jennifer%20E.&rft.date=1998-09-04&rft.volume=273&rft.issue=36&rft.spage=23433&rft.epage=23439&rft.pages=23433-23439&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.273.36.23433&rft_dat=%3Cproquest_cross%3E73862851%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-f571a6a261483a3897ed27da9f416cb11a12f2d1e2de1af248bd1ab691dccbe73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=73862851&rft_id=info:pmid/9722579&rfr_iscdi=true