Loading…

Conformational analysis of a Chlamydia-specific disaccharide alpha-Kdo-(2-->8)-alpha-Kdo-(2-->O)-allyl in aqueous solution and bound to a monoclonal antibody: observation of intermolecular transfer NOEs

The disaccharide alpha-Kdo-(2-->8)-alpha-Kdo (Kdo: 3-deoxy-D-manno-oct-2-ulosonic acid) represents a genus-specific epitope of the lipopolysaccharide of the obligate intracellular human pathogen Chlamydia. The conformation of the synthetically derived disaccharide alpha-Kdo-(2-->8)-alpha-Kdo-(...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomolecular NMR 1998-07, Vol.12 (1), p.123-133
Main Authors: Sokolowski, T, Haselhorst, T, Scheffler, K, Weisemann, R, Kosma, P, Brade, H, Brade, L, Peters, T
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The disaccharide alpha-Kdo-(2-->8)-alpha-Kdo (Kdo: 3-deoxy-D-manno-oct-2-ulosonic acid) represents a genus-specific epitope of the lipopolysaccharide of the obligate intracellular human pathogen Chlamydia. The conformation of the synthetically derived disaccharide alpha-Kdo-(2-->8)-alpha-Kdo-(2-->O)-allyl was studied in aqueous solution, and complexed to a monoclonal antibody S25-2. Various NMR experiments based on the detection of NOEs (or transfer NOEs) and ROEs (or transfer ROEs) were performed. A major problem was the extensive overlap of almost all 1H NMR signals of alpha-Kdo-(2-->8)-alpha-Kdo-(2-->O)-allyl. To overcome this difficulty, HMQC-NOESY and HMQC-trNOESY experiments were employed. Spin diffusion effects were identified using trROESY experiments, QUIET-trNOESY experiments and MINSY experiments. It was found that protein protons contribute to the observed spin diffusion effects. At 800 MHz, intermolecular trNOEs were observed between ligand protons and aromatic protons in the antibody binding site. From NMR experiments and Metropolis Monte Carlo simulations, it was concluded that alpha-Kdo-(2-->8)-alpha-Kdo-(2-->O)-allyl in aqueous solution exists as a complex conformational mixture. Upon binding to the monoclonal antibody S25-2, only a limited range of conformations is available to alpha-Kdo-(2-->8)-alpha-Kdo-(2-->O)-allyl. These possible bound conformations were derived from a distance geometry analysis using transfer NOEs as experimental constraints. It is clear that a conformation is selected which lies within a part of the conformational space that is highly populated in solution. This conformational space also includes the conformation found in the crystal structure. Our results provide a basis for modeling studies of the antibody-disaccharide complex.
ISSN:0925-2738
1573-5001
DOI:10.1023/A:1016047602190