Loading…
Saliva composition and exercise
Little attention has been directed toward identifying the changes which occur in salivary composition in response to exercise. To address this, our article first refers to the main aspects of salivary gland physiology. A knowledge of the neural control of salivary secretion is especially important f...
Saved in:
Published in: | Sports medicine (Auckland) 1998-07, Vol.26 (1), p.17-27 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Little attention has been directed toward identifying the changes which occur in salivary composition in response to exercise. To address this, our article first refers to the main aspects of salivary gland physiology. A knowledge of the neural control of salivary secretion is especially important for the understanding of the effects of exertion on salivary secretion. Both salivary output and composition depend on the activity of the autonomic nervous system and any modification of this activity can be observed indirectly by alternations in the salivary excretion. The effects of physical activity (with reference to factors such as exercise intensity and duration, or type of exercise protocol) on salivary composition are then considered. Exercise might indeed induce changes in several salivary components such as immunoglobulins, hormones, lactate, proteins and electrolytes. Saliva composition might therefore be used as an alternative noninvasive indicator of the response of the different body tissues and systems to physical exertion. In this respect, the response of salivary amylase and salivary electrolytes to incremental levels of exercise is of particular interest. Beyond a certain intensity of exercise, and coinciding with the accumulation of blood lactate (anaerobic threshold or AT), a 'saliva threshold' (Tsa) does indeed exist. Tsa is the point during exercise at which the levels of salivary alpha-amylase and electrolytes (especially Na+) also begin to rise above baseline levels. The occurrence of the 2 thresholds (AT and Tsa) might, in turn, be attributable to the same underlying mechanism, that of increased adrenal sympathetic activity at high exercise intensities. |
---|---|
ISSN: | 0112-1642 1179-2035 |
DOI: | 10.2165/00007256-199826010-00002 |