Loading…

The RNA-splicing Factor PSF/p54 Controls DNA-Topoisomerase I Activity by a Direct Interaction

DNA-topoisomerase I has been implied in RNA splicing because it catalyzes RNA strand transfer and activates serine/arginine-rich RNA-splicing factors by phosphorylation. Here, we demonstrate a direct interaction between topoisomerase I and pyrimidine tract binding protein-associated splicing factor...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1998-10, Vol.273 (41), p.26261-26264
Main Authors: Straub, Tobias, Grue, Pernille, Uhse, Anette, Lisby, Michael, Knudsen, Birgitta R., Tange, Thomas Ø., Westergaard, Ole, Boege, Fritz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:DNA-topoisomerase I has been implied in RNA splicing because it catalyzes RNA strand transfer and activates serine/arginine-rich RNA-splicing factors by phosphorylation. Here, we demonstrate a direct interaction between topoisomerase I and pyrimidine tract binding protein-associated splicing factor (PSF), a cofactor of RNA splicing, which forms heterodimers with its smaller homolog, the nuclear RNA-binding protein of 54 kDa (p54). Topoisomerase I, PSF, and p54 copurified in a 1:1:1 ratio from human A431 cell nuclear extracts. Specific binding of topoisomerase I to PSF (but not p54) was demonstrated by coimmunoprecipitation and by far Western blotting, in which renatured blots were probed with biotinylated topoisomerase I. Chemical cross-linking of pure topoisomerase I revealed monomeric, dimeric, and trimeric enzyme forms, whereas in the presence of PSF/p54 the enzyme was cross-linked into complexes larger than homotrimers. When topoisomerase I was complexed with PSF/p54 it was 16-fold more active than the pure enzyme, which could be stimulated 5- and 16-fold by the addition of recombinant PSF or native PSF/p54, respectively. A physiological role of this stimulatory mechanism seems feasible, because topoisomerase I and PSF showed a patched colocalization in A431 cell nuclei, which varied with cell cycle.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.273.41.26261