Loading…

Perturbations of the quadratic family of order two: the boundary of hyperbolicity

In this paper the perturbations of F4(x, y) = (y, -x2 + 4x) are considered. The existence of infinitely many critical homoclinic orbits for F4 makes this mapping a bifurcation point involving diverse dynamical structures. It is proved that there exist infinitely many codimension one submanifolds in...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinearity 2009-05, Vol.22 (5), p.1145-1165
Main Authors: Romero, N, Rovella, A, Vilamajó, F
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-d7e64ffbebd79dc15e4b25e77b34965740456e26273d8a47e95a91f19383222b3
cites cdi_FETCH-LOGICAL-c351t-d7e64ffbebd79dc15e4b25e77b34965740456e26273d8a47e95a91f19383222b3
container_end_page 1165
container_issue 5
container_start_page 1145
container_title Nonlinearity
container_volume 22
creator Romero, N
Rovella, A
Vilamajó, F
description In this paper the perturbations of F4(x, y) = (y, -x2 + 4x) are considered. The existence of infinitely many critical homoclinic orbits for F4 makes this mapping a bifurcation point involving diverse dynamical structures. It is proved that there exist infinitely many codimension one submanifolds in the space of C2 endomorphisms, each of which accumulates on F4, is contained in the boundary of the set of hyperbolic mappings and is determined by the continuation of one of the homoclinic orbits of F4.
doi_str_mv 10.1088/0951-7715/22/5/010
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743073124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743073124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-d7e64ffbebd79dc15e4b25e77b34965740456e26273d8a47e95a91f19383222b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU-9iYfaTD6a1pssfsGCCnoOSZOwle6mm7TI_nvbrexlwdPAO887DA9C14DvABdFhksOqRDAM0IynmHAJ2gGNIc054ydotkBOEcXMX5jDFAQOkMf7zZ0fdCqq_0mJt4l3com216ZMERV4tS6bnZj7oOxIel-_P0e0b7fGBX2q9WutUH7pq7qbneJzpxqor36m3P09fT4uXhJl2_Pr4uHZVpRDl1qhM2Zc9pqI0pTAbdME26F0JSVORcMM55bkhNBTaGYsCVXJTgoaUEJIZrO0c10tw1-29vYyXUdK9s0amN9H6VgFAsKhA0kmcgq-BiDdbIN9Xr4XQKWoz452pGjHUmI5HLQN5Rup1Lt2wN_zMnWuIFNj9l_bv8CN_h8_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743073124</pqid></control><display><type>article</type><title>Perturbations of the quadratic family of order two: the boundary of hyperbolicity</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Romero, N ; Rovella, A ; Vilamajó, F</creator><creatorcontrib>Romero, N ; Rovella, A ; Vilamajó, F</creatorcontrib><description>In this paper the perturbations of F4(x, y) = (y, -x2 + 4x) are considered. The existence of infinitely many critical homoclinic orbits for F4 makes this mapping a bifurcation point involving diverse dynamical structures. It is proved that there exist infinitely many codimension one submanifolds in the space of C2 endomorphisms, each of which accumulates on F4, is contained in the boundary of the set of hyperbolic mappings and is determined by the continuation of one of the homoclinic orbits of F4.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/0951-7715/22/5/010</identifier><language>eng</language><publisher>IOP Publishing</publisher><ispartof>Nonlinearity, 2009-05, Vol.22 (5), p.1145-1165</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-d7e64ffbebd79dc15e4b25e77b34965740456e26273d8a47e95a91f19383222b3</citedby><cites>FETCH-LOGICAL-c351t-d7e64ffbebd79dc15e4b25e77b34965740456e26273d8a47e95a91f19383222b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Romero, N</creatorcontrib><creatorcontrib>Rovella, A</creatorcontrib><creatorcontrib>Vilamajó, F</creatorcontrib><title>Perturbations of the quadratic family of order two: the boundary of hyperbolicity</title><title>Nonlinearity</title><description>In this paper the perturbations of F4(x, y) = (y, -x2 + 4x) are considered. The existence of infinitely many critical homoclinic orbits for F4 makes this mapping a bifurcation point involving diverse dynamical structures. It is proved that there exist infinitely many codimension one submanifolds in the space of C2 endomorphisms, each of which accumulates on F4, is contained in the boundary of the set of hyperbolic mappings and is determined by the continuation of one of the homoclinic orbits of F4.</description><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU-9iYfaTD6a1pssfsGCCnoOSZOwle6mm7TI_nvbrexlwdPAO887DA9C14DvABdFhksOqRDAM0IynmHAJ2gGNIc054ydotkBOEcXMX5jDFAQOkMf7zZ0fdCqq_0mJt4l3com216ZMERV4tS6bnZj7oOxIel-_P0e0b7fGBX2q9WutUH7pq7qbneJzpxqor36m3P09fT4uXhJl2_Pr4uHZVpRDl1qhM2Zc9pqI0pTAbdME26F0JSVORcMM55bkhNBTaGYsCVXJTgoaUEJIZrO0c10tw1-29vYyXUdK9s0amN9H6VgFAsKhA0kmcgq-BiDdbIN9Xr4XQKWoz452pGjHUmI5HLQN5Rup1Lt2wN_zMnWuIFNj9l_bv8CN_h8_g</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Romero, N</creator><creator>Rovella, A</creator><creator>Vilamajó, F</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090501</creationdate><title>Perturbations of the quadratic family of order two: the boundary of hyperbolicity</title><author>Romero, N ; Rovella, A ; Vilamajó, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-d7e64ffbebd79dc15e4b25e77b34965740456e26273d8a47e95a91f19383222b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romero, N</creatorcontrib><creatorcontrib>Rovella, A</creatorcontrib><creatorcontrib>Vilamajó, F</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romero, N</au><au>Rovella, A</au><au>Vilamajó, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perturbations of the quadratic family of order two: the boundary of hyperbolicity</atitle><jtitle>Nonlinearity</jtitle><date>2009-05-01</date><risdate>2009</risdate><volume>22</volume><issue>5</issue><spage>1145</spage><epage>1165</epage><pages>1145-1165</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><abstract>In this paper the perturbations of F4(x, y) = (y, -x2 + 4x) are considered. The existence of infinitely many critical homoclinic orbits for F4 makes this mapping a bifurcation point involving diverse dynamical structures. It is proved that there exist infinitely many codimension one submanifolds in the space of C2 endomorphisms, each of which accumulates on F4, is contained in the boundary of the set of hyperbolic mappings and is determined by the continuation of one of the homoclinic orbits of F4.</abstract><pub>IOP Publishing</pub><doi>10.1088/0951-7715/22/5/010</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2009-05, Vol.22 (5), p.1145-1165
issn 0951-7715
1361-6544
language eng
recordid cdi_proquest_miscellaneous_743073124
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
title Perturbations of the quadratic family of order two: the boundary of hyperbolicity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A29%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perturbations%20of%20the%20quadratic%20family%20of%20order%20two:%20the%20boundary%20of%20hyperbolicity&rft.jtitle=Nonlinearity&rft.au=Romero,%20N&rft.date=2009-05-01&rft.volume=22&rft.issue=5&rft.spage=1145&rft.epage=1165&rft.pages=1145-1165&rft.issn=0951-7715&rft.eissn=1361-6544&rft_id=info:doi/10.1088/0951-7715/22/5/010&rft_dat=%3Cproquest_cross%3E743073124%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-d7e64ffbebd79dc15e4b25e77b34965740456e26273d8a47e95a91f19383222b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=743073124&rft_id=info:pmid/&rfr_iscdi=true