Loading…

Bifurcation for some quasilinear operators

This paper deals with existence, uniqueness and multiplicity results of positive solutions for the quasilinear elliptic boundary-value problem , where Ω is a bounded open domain in RN with smooth boundary. Under suitable assumptions on the matrix A(x, s), and depending on the behaviour of the functi...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2001-08, Vol.131 (4), p.733-765
Main Authors: Arcoya, David, Carmona, José, Pellacci, Benedetta
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-eccbf4803ea68c8bdd0120fd60c8bb7c064e7bc8b393e4d5e70bc81b31d39ba43
cites
container_end_page 765
container_issue 4
container_start_page 733
container_title Proceedings of the Royal Society of Edinburgh. Section A. Mathematics
container_volume 131
creator Arcoya, David
Carmona, José
Pellacci, Benedetta
description This paper deals with existence, uniqueness and multiplicity results of positive solutions for the quasilinear elliptic boundary-value problem , where Ω is a bounded open domain in RN with smooth boundary. Under suitable assumptions on the matrix A(x, s), and depending on the behaviour of the function f near u = 0 and near u = +∞, we can use bifurcation theory in order to give a quite complete analysis on the set of positive solutions. We will generalize in different directions some of the results in the papers by Ambrosetti et al., Ambrosetti and Hess, and Artola and Boccardo.
doi_str_mv 10.1017/S0308210500001086
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743088250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0308210500001086</cupid><sourcerecordid>1453984091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-eccbf4803ea68c8bdd0120fd60c8bb7c064e7bc8b393e4d5e70bc81b31d39ba43</originalsourceid><addsrcrecordid>eNp1kEtLAzEQx4MoWKsfwNviRRBW89pNerTFtkpB6vMYstlZSd1t2mQX9Nub0qKgOJeZYX7_eSF0SvAlwURcPWKGJSU4w9EIlvke6hEuWCoI5fuotymnm_ohOgphEaFcZqKHLoa26rzRrXXLpHI-Ca6BZN3pYGu7BO0TtwKvW-fDMTqodB3gZOf76Hl88zSaprP7ye3oepYaTgdtCsYUFZeYgc6lkUVZYkJxVeY4JoUwOOcgihizAQNeZiBwzEjBSMkGheasj863fVferTsIrWpsMFDXegmuC0rweIukGY7k2S9y4Tq_jMspSqmgVGYsQmQLGe9C8FCplbeN9p-KYLX5nfrzu6hJtxobWvj4Fmj_rnLBRKbyyVzdvY5fpsP5g5pEnu1m6KbwtnyDn03-n_IFpb9-1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222722853</pqid></control><display><type>article</type><title>Bifurcation for some quasilinear operators</title><source>Cambridge Journals Online</source><creator>Arcoya, David ; Carmona, José ; Pellacci, Benedetta</creator><creatorcontrib>Arcoya, David ; Carmona, José ; Pellacci, Benedetta</creatorcontrib><description>This paper deals with existence, uniqueness and multiplicity results of positive solutions for the quasilinear elliptic boundary-value problem , where Ω is a bounded open domain in RN with smooth boundary. Under suitable assumptions on the matrix A(x, s), and depending on the behaviour of the function f near u = 0 and near u = +∞, we can use bifurcation theory in order to give a quite complete analysis on the set of positive solutions. We will generalize in different directions some of the results in the papers by Ambrosetti et al., Ambrosetti and Hess, and Artola and Boccardo.</description><identifier>ISSN: 0308-2105</identifier><identifier>EISSN: 1473-7124</identifier><identifier>DOI: 10.1017/S0308210500001086</identifier><language>eng</language><publisher>Edinburgh, UK: Royal Society of Edinburgh Scotland Foundation</publisher><ispartof>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2001-08, Vol.131 (4), p.733-765</ispartof><rights>Copyright © Royal Society of Edinburgh 2001</rights><rights>Royal Society of Edinburgh</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-eccbf4803ea68c8bdd0120fd60c8bb7c064e7bc8b393e4d5e70bc81b31d39ba43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0308210500001086/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,72731</link.rule.ids></links><search><creatorcontrib>Arcoya, David</creatorcontrib><creatorcontrib>Carmona, José</creatorcontrib><creatorcontrib>Pellacci, Benedetta</creatorcontrib><title>Bifurcation for some quasilinear operators</title><title>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</title><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><description>This paper deals with existence, uniqueness and multiplicity results of positive solutions for the quasilinear elliptic boundary-value problem , where Ω is a bounded open domain in RN with smooth boundary. Under suitable assumptions on the matrix A(x, s), and depending on the behaviour of the function f near u = 0 and near u = +∞, we can use bifurcation theory in order to give a quite complete analysis on the set of positive solutions. We will generalize in different directions some of the results in the papers by Ambrosetti et al., Ambrosetti and Hess, and Artola and Boccardo.</description><issn>0308-2105</issn><issn>1473-7124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEQx4MoWKsfwNviRRBW89pNerTFtkpB6vMYstlZSd1t2mQX9Nub0qKgOJeZYX7_eSF0SvAlwURcPWKGJSU4w9EIlvke6hEuWCoI5fuotymnm_ohOgphEaFcZqKHLoa26rzRrXXLpHI-Ca6BZN3pYGu7BO0TtwKvW-fDMTqodB3gZOf76Hl88zSaprP7ye3oepYaTgdtCsYUFZeYgc6lkUVZYkJxVeY4JoUwOOcgihizAQNeZiBwzEjBSMkGheasj863fVferTsIrWpsMFDXegmuC0rweIukGY7k2S9y4Tq_jMspSqmgVGYsQmQLGe9C8FCplbeN9p-KYLX5nfrzu6hJtxobWvj4Fmj_rnLBRKbyyVzdvY5fpsP5g5pEnu1m6KbwtnyDn03-n_IFpb9-1Q</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Arcoya, David</creator><creator>Carmona, José</creator><creator>Pellacci, Benedetta</creator><general>Royal Society of Edinburgh Scotland Foundation</general><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20010801</creationdate><title>Bifurcation for some quasilinear operators</title><author>Arcoya, David ; Carmona, José ; Pellacci, Benedetta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-eccbf4803ea68c8bdd0120fd60c8bb7c064e7bc8b393e4d5e70bc81b31d39ba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arcoya, David</creatorcontrib><creatorcontrib>Carmona, José</creatorcontrib><creatorcontrib>Pellacci, Benedetta</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arcoya, David</au><au>Carmona, José</au><au>Pellacci, Benedetta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcation for some quasilinear operators</atitle><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><date>2001-08-01</date><risdate>2001</risdate><volume>131</volume><issue>4</issue><spage>733</spage><epage>765</epage><pages>733-765</pages><issn>0308-2105</issn><eissn>1473-7124</eissn><abstract>This paper deals with existence, uniqueness and multiplicity results of positive solutions for the quasilinear elliptic boundary-value problem , where Ω is a bounded open domain in RN with smooth boundary. Under suitable assumptions on the matrix A(x, s), and depending on the behaviour of the function f near u = 0 and near u = +∞, we can use bifurcation theory in order to give a quite complete analysis on the set of positive solutions. We will generalize in different directions some of the results in the papers by Ambrosetti et al., Ambrosetti and Hess, and Artola and Boccardo.</abstract><cop>Edinburgh, UK</cop><pub>Royal Society of Edinburgh Scotland Foundation</pub><doi>10.1017/S0308210500001086</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0308-2105
ispartof Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2001-08, Vol.131 (4), p.733-765
issn 0308-2105
1473-7124
language eng
recordid cdi_proquest_miscellaneous_743088250
source Cambridge Journals Online
title Bifurcation for some quasilinear operators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcation%20for%20some%20quasilinear%20operators&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20Edinburgh.%20Section%20A.%20Mathematics&rft.au=Arcoya,%20David&rft.date=2001-08-01&rft.volume=131&rft.issue=4&rft.spage=733&rft.epage=765&rft.pages=733-765&rft.issn=0308-2105&rft.eissn=1473-7124&rft_id=info:doi/10.1017/S0308210500001086&rft_dat=%3Cproquest_cross%3E1453984091%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-eccbf4803ea68c8bdd0120fd60c8bb7c064e7bc8b393e4d5e70bc81b31d39ba43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=222722853&rft_id=info:pmid/&rft_cupid=10_1017_S0308210500001086&rfr_iscdi=true