Loading…
Bifurcation for some quasilinear operators
This paper deals with existence, uniqueness and multiplicity results of positive solutions for the quasilinear elliptic boundary-value problem , where Ω is a bounded open domain in RN with smooth boundary. Under suitable assumptions on the matrix A(x, s), and depending on the behaviour of the functi...
Saved in:
Published in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2001-08, Vol.131 (4), p.733-765 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-eccbf4803ea68c8bdd0120fd60c8bb7c064e7bc8b393e4d5e70bc81b31d39ba43 |
---|---|
cites | |
container_end_page | 765 |
container_issue | 4 |
container_start_page | 733 |
container_title | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics |
container_volume | 131 |
creator | Arcoya, David Carmona, José Pellacci, Benedetta |
description | This paper deals with existence, uniqueness and multiplicity results of positive solutions for the quasilinear elliptic boundary-value problem
,
where Ω is a bounded open domain in RN with smooth boundary. Under suitable assumptions on the matrix A(x, s), and depending on the behaviour of the function f near u = 0 and near u = +∞, we can use bifurcation theory in order to give a quite complete analysis on the set of positive solutions. We will generalize in different directions some of the results in the papers by Ambrosetti et al., Ambrosetti and Hess, and Artola and Boccardo. |
doi_str_mv | 10.1017/S0308210500001086 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743088250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0308210500001086</cupid><sourcerecordid>1453984091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-eccbf4803ea68c8bdd0120fd60c8bb7c064e7bc8b393e4d5e70bc81b31d39ba43</originalsourceid><addsrcrecordid>eNp1kEtLAzEQx4MoWKsfwNviRRBW89pNerTFtkpB6vMYstlZSd1t2mQX9Nub0qKgOJeZYX7_eSF0SvAlwURcPWKGJSU4w9EIlvke6hEuWCoI5fuotymnm_ohOgphEaFcZqKHLoa26rzRrXXLpHI-Ca6BZN3pYGu7BO0TtwKvW-fDMTqodB3gZOf76Hl88zSaprP7ye3oepYaTgdtCsYUFZeYgc6lkUVZYkJxVeY4JoUwOOcgihizAQNeZiBwzEjBSMkGheasj863fVferTsIrWpsMFDXegmuC0rweIukGY7k2S9y4Tq_jMspSqmgVGYsQmQLGe9C8FCplbeN9p-KYLX5nfrzu6hJtxobWvj4Fmj_rnLBRKbyyVzdvY5fpsP5g5pEnu1m6KbwtnyDn03-n_IFpb9-1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222722853</pqid></control><display><type>article</type><title>Bifurcation for some quasilinear operators</title><source>Cambridge Journals Online</source><creator>Arcoya, David ; Carmona, José ; Pellacci, Benedetta</creator><creatorcontrib>Arcoya, David ; Carmona, José ; Pellacci, Benedetta</creatorcontrib><description>This paper deals with existence, uniqueness and multiplicity results of positive solutions for the quasilinear elliptic boundary-value problem
,
where Ω is a bounded open domain in RN with smooth boundary. Under suitable assumptions on the matrix A(x, s), and depending on the behaviour of the function f near u = 0 and near u = +∞, we can use bifurcation theory in order to give a quite complete analysis on the set of positive solutions. We will generalize in different directions some of the results in the papers by Ambrosetti et al., Ambrosetti and Hess, and Artola and Boccardo.</description><identifier>ISSN: 0308-2105</identifier><identifier>EISSN: 1473-7124</identifier><identifier>DOI: 10.1017/S0308210500001086</identifier><language>eng</language><publisher>Edinburgh, UK: Royal Society of Edinburgh Scotland Foundation</publisher><ispartof>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2001-08, Vol.131 (4), p.733-765</ispartof><rights>Copyright © Royal Society of Edinburgh 2001</rights><rights>Royal Society of Edinburgh</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-eccbf4803ea68c8bdd0120fd60c8bb7c064e7bc8b393e4d5e70bc81b31d39ba43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0308210500001086/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,72731</link.rule.ids></links><search><creatorcontrib>Arcoya, David</creatorcontrib><creatorcontrib>Carmona, José</creatorcontrib><creatorcontrib>Pellacci, Benedetta</creatorcontrib><title>Bifurcation for some quasilinear operators</title><title>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</title><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><description>This paper deals with existence, uniqueness and multiplicity results of positive solutions for the quasilinear elliptic boundary-value problem
,
where Ω is a bounded open domain in RN with smooth boundary. Under suitable assumptions on the matrix A(x, s), and depending on the behaviour of the function f near u = 0 and near u = +∞, we can use bifurcation theory in order to give a quite complete analysis on the set of positive solutions. We will generalize in different directions some of the results in the papers by Ambrosetti et al., Ambrosetti and Hess, and Artola and Boccardo.</description><issn>0308-2105</issn><issn>1473-7124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEQx4MoWKsfwNviRRBW89pNerTFtkpB6vMYstlZSd1t2mQX9Nub0qKgOJeZYX7_eSF0SvAlwURcPWKGJSU4w9EIlvke6hEuWCoI5fuotymnm_ohOgphEaFcZqKHLoa26rzRrXXLpHI-Ca6BZN3pYGu7BO0TtwKvW-fDMTqodB3gZOf76Hl88zSaprP7ye3oepYaTgdtCsYUFZeYgc6lkUVZYkJxVeY4JoUwOOcgihizAQNeZiBwzEjBSMkGheasj863fVferTsIrWpsMFDXegmuC0rweIukGY7k2S9y4Tq_jMspSqmgVGYsQmQLGe9C8FCplbeN9p-KYLX5nfrzu6hJtxobWvj4Fmj_rnLBRKbyyVzdvY5fpsP5g5pEnu1m6KbwtnyDn03-n_IFpb9-1Q</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Arcoya, David</creator><creator>Carmona, José</creator><creator>Pellacci, Benedetta</creator><general>Royal Society of Edinburgh Scotland Foundation</general><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20010801</creationdate><title>Bifurcation for some quasilinear operators</title><author>Arcoya, David ; Carmona, José ; Pellacci, Benedetta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-eccbf4803ea68c8bdd0120fd60c8bb7c064e7bc8b393e4d5e70bc81b31d39ba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arcoya, David</creatorcontrib><creatorcontrib>Carmona, José</creatorcontrib><creatorcontrib>Pellacci, Benedetta</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arcoya, David</au><au>Carmona, José</au><au>Pellacci, Benedetta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcation for some quasilinear operators</atitle><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><date>2001-08-01</date><risdate>2001</risdate><volume>131</volume><issue>4</issue><spage>733</spage><epage>765</epage><pages>733-765</pages><issn>0308-2105</issn><eissn>1473-7124</eissn><abstract>This paper deals with existence, uniqueness and multiplicity results of positive solutions for the quasilinear elliptic boundary-value problem
,
where Ω is a bounded open domain in RN with smooth boundary. Under suitable assumptions on the matrix A(x, s), and depending on the behaviour of the function f near u = 0 and near u = +∞, we can use bifurcation theory in order to give a quite complete analysis on the set of positive solutions. We will generalize in different directions some of the results in the papers by Ambrosetti et al., Ambrosetti and Hess, and Artola and Boccardo.</abstract><cop>Edinburgh, UK</cop><pub>Royal Society of Edinburgh Scotland Foundation</pub><doi>10.1017/S0308210500001086</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-2105 |
ispartof | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2001-08, Vol.131 (4), p.733-765 |
issn | 0308-2105 1473-7124 |
language | eng |
recordid | cdi_proquest_miscellaneous_743088250 |
source | Cambridge Journals Online |
title | Bifurcation for some quasilinear operators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcation%20for%20some%20quasilinear%20operators&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20Edinburgh.%20Section%20A.%20Mathematics&rft.au=Arcoya,%20David&rft.date=2001-08-01&rft.volume=131&rft.issue=4&rft.spage=733&rft.epage=765&rft.pages=733-765&rft.issn=0308-2105&rft.eissn=1473-7124&rft_id=info:doi/10.1017/S0308210500001086&rft_dat=%3Cproquest_cross%3E1453984091%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-eccbf4803ea68c8bdd0120fd60c8bb7c064e7bc8b393e4d5e70bc81b31d39ba43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=222722853&rft_id=info:pmid/&rft_cupid=10_1017_S0308210500001086&rfr_iscdi=true |