Loading…

Oblique Stepwise Rise and Growth of the Tibet Plateau

Two end member models of how the high elevations in Tibet formed are (i) continuous thickening and widespread viscous flow of the crust and mantle of the entire plateau and (ii) time-dependent, localized shear between coherent lithospheric blocks. Recent studies of Cenozoic deformation, magmatism, a...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2001-11, Vol.294 (5547), p.1671-1677
Main Authors: Tapponnier, Paul, Zhiqin, Xu, Roger, Françoise, Meyer, Bertrand, Arnaud, Nicolas, Wittlinger, Gérard, Jingsui, Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a711t-16a505a6e064afee2a9505d995b52225e72db0f59d96db4e65aea2f45f948d713
cites cdi_FETCH-LOGICAL-a711t-16a505a6e064afee2a9505d995b52225e72db0f59d96db4e65aea2f45f948d713
container_end_page 1677
container_issue 5547
container_start_page 1671
container_title Science (American Association for the Advancement of Science)
container_volume 294
creator Tapponnier, Paul
Zhiqin, Xu
Roger, Françoise
Meyer, Bertrand
Arnaud, Nicolas
Wittlinger, Gérard
Jingsui, Yang
description Two end member models of how the high elevations in Tibet formed are (i) continuous thickening and widespread viscous flow of the crust and mantle of the entire plateau and (ii) time-dependent, localized shear between coherent lithospheric blocks. Recent studies of Cenozoic deformation, magmatism, and seismic structure lend support to the latter. Since India collided with Asia ∼55 million years ago, the rise of the high Tibetan plateau likely occurred in three main steps, by successive growth and uplift of 300- to 500-kilometer-wide crustal thrust-wedges. The crust thickened, while the mantle, decoupled beneath gently dipping shear zones, did not. Sediment infilling, bathtub-like, of dammed intermontane basins formed flat high plains at each step. The existence of magmatic belts younging northward implies that slabs of Asian mantle subducted one after another under ranges north of the Himalayas. Subduction was oblique and accompanied by extrusion along the left lateral strike-slip faults that slice Tibet's east side. These mechanisms, akin to plate tectonics hidden by thickening crust, with slip-partitioning, account for the dominant growth of the Tibet Plateau toward the east and northeast.
doi_str_mv 10.1126/science.105978
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743093175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A80681063</galeid><jstor_id>3085289</jstor_id><sourcerecordid>A80681063</sourcerecordid><originalsourceid>FETCH-LOGICAL-a711t-16a505a6e064afee2a9505d995b52225e72db0f59d96db4e65aea2f45f948d713</originalsourceid><addsrcrecordid>eNqN0u-L0zAYB_Agijenb30lUg788eI6nyRN2rw8h86D4cQ7fRvS9umuo2tnknJ3_705WjwmQ0cgIcknDwn5EvKSwoxSJj-4osa2wBkFodLsEZlQUCJWDPhjMgHgMs4gFSfkmXMbgLCn-FNyQmnKKCTJhIhV3tS_eowuPe5uaofR9_vOtGW0sN2Nv466KvLXGF3VOfroW2M8mv45eVKZxuGLcZySH58_Xc2_xMvV4mJ-voxNSqmPqTQChJEIMjEVIjMqzEulRC4YYwJTVuZQCVUqWeYJSmHQsCoRlUqyMqV8St4NdXe2C5d0Xm9rV2DTmBa73uk04aA4TUWQb_8tGYdUMfVfyKQUkIbCU3L6F9x0vW3DczWjXIRiPAvobEBr06Cu26rz1hRrbNGapmuxqsPyeQYyoyB54PEBHlqJ27o45N_v-UA83vq16Z3TF5dfj6arn0fTj4tjabZY7tGzQ7TomgbXqEMu5qs9Pht4YTvnLFZ6Z-utsXeagr6Pth6jrYdohwOvx__o8y2WD3zMcgBvRmBcYZrKmrao3YNLKOUqg-BeDW7jfGf_7HPIBMsU_w3W6AOt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213579238</pqid></control><display><type>article</type><title>Oblique Stepwise Rise and Growth of the Tibet Plateau</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Social Science Premium Collection</source><source>Alma/SFX Local Collection</source><source>Education Collection</source><creator>Tapponnier, Paul ; Zhiqin, Xu ; Roger, Françoise ; Meyer, Bertrand ; Arnaud, Nicolas ; Wittlinger, Gérard ; Jingsui, Yang</creator><creatorcontrib>Tapponnier, Paul ; Zhiqin, Xu ; Roger, Françoise ; Meyer, Bertrand ; Arnaud, Nicolas ; Wittlinger, Gérard ; Jingsui, Yang</creatorcontrib><description>Two end member models of how the high elevations in Tibet formed are (i) continuous thickening and widespread viscous flow of the crust and mantle of the entire plateau and (ii) time-dependent, localized shear between coherent lithospheric blocks. Recent studies of Cenozoic deformation, magmatism, and seismic structure lend support to the latter. Since India collided with Asia ∼55 million years ago, the rise of the high Tibetan plateau likely occurred in three main steps, by successive growth and uplift of 300- to 500-kilometer-wide crustal thrust-wedges. The crust thickened, while the mantle, decoupled beneath gently dipping shear zones, did not. Sediment infilling, bathtub-like, of dammed intermontane basins formed flat high plains at each step. The existence of magmatic belts younging northward implies that slabs of Asian mantle subducted one after another under ranges north of the Himalayas. Subduction was oblique and accompanied by extrusion along the left lateral strike-slip faults that slice Tibet's east side. These mechanisms, akin to plate tectonics hidden by thickening crust, with slip-partitioning, account for the dominant growth of the Tibet Plateau toward the east and northeast.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.105978</identifier><identifier>PMID: 11721044</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Society for the Advancement of Science</publisher><subject>Cartography ; Continental drift ; Earth ; Earth sciences ; Earth, ocean, space ; Evidence ; Exact sciences and technology ; Geology ; India ; Internal geophysics ; Lithospheres ; Mantle ; Natural history ; Paleogeophysics ; Plate Tectonics ; Plateaus ; Review ; Shear zones ; Solid-earth geophysics, tectonophysics, gravimetry ; Strike slip faults ; Strikes ; Subduction ; Tectonics ; Tectonics. Structural geology. Plate tectonics ; Tibet ; Topography ; Volcanism</subject><ispartof>Science (American Association for the Advancement of Science), 2001-11, Vol.294 (5547), p.1671-1677</ispartof><rights>Copyright 2001 American Association for the Advancement of Science</rights><rights>2002 INIST-CNRS</rights><rights>COPYRIGHT 2001 American Association for the Advancement of Science</rights><rights>COPYRIGHT 2001 American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Nov 23, 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a711t-16a505a6e064afee2a9505d995b52225e72db0f59d96db4e65aea2f45f948d713</citedby><cites>FETCH-LOGICAL-a711t-16a505a6e064afee2a9505d995b52225e72db0f59d96db4e65aea2f45f948d713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/213579238/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/213579238?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,2884,2885,21378,21394,27924,27925,33611,33612,33877,33878,43733,43880,58238,58471,74221,74397</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14113980$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11721044$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tapponnier, Paul</creatorcontrib><creatorcontrib>Zhiqin, Xu</creatorcontrib><creatorcontrib>Roger, Françoise</creatorcontrib><creatorcontrib>Meyer, Bertrand</creatorcontrib><creatorcontrib>Arnaud, Nicolas</creatorcontrib><creatorcontrib>Wittlinger, Gérard</creatorcontrib><creatorcontrib>Jingsui, Yang</creatorcontrib><title>Oblique Stepwise Rise and Growth of the Tibet Plateau</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Two end member models of how the high elevations in Tibet formed are (i) continuous thickening and widespread viscous flow of the crust and mantle of the entire plateau and (ii) time-dependent, localized shear between coherent lithospheric blocks. Recent studies of Cenozoic deformation, magmatism, and seismic structure lend support to the latter. Since India collided with Asia ∼55 million years ago, the rise of the high Tibetan plateau likely occurred in three main steps, by successive growth and uplift of 300- to 500-kilometer-wide crustal thrust-wedges. The crust thickened, while the mantle, decoupled beneath gently dipping shear zones, did not. Sediment infilling, bathtub-like, of dammed intermontane basins formed flat high plains at each step. The existence of magmatic belts younging northward implies that slabs of Asian mantle subducted one after another under ranges north of the Himalayas. Subduction was oblique and accompanied by extrusion along the left lateral strike-slip faults that slice Tibet's east side. These mechanisms, akin to plate tectonics hidden by thickening crust, with slip-partitioning, account for the dominant growth of the Tibet Plateau toward the east and northeast.</description><subject>Cartography</subject><subject>Continental drift</subject><subject>Earth</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Evidence</subject><subject>Exact sciences and technology</subject><subject>Geology</subject><subject>India</subject><subject>Internal geophysics</subject><subject>Lithospheres</subject><subject>Mantle</subject><subject>Natural history</subject><subject>Paleogeophysics</subject><subject>Plate Tectonics</subject><subject>Plateaus</subject><subject>Review</subject><subject>Shear zones</subject><subject>Solid-earth geophysics, tectonophysics, gravimetry</subject><subject>Strike slip faults</subject><subject>Strikes</subject><subject>Subduction</subject><subject>Tectonics</subject><subject>Tectonics. Structural geology. Plate tectonics</subject><subject>Tibet</subject><subject>Topography</subject><subject>Volcanism</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>CJNVE</sourceid><sourceid>M0P</sourceid><recordid>eNqN0u-L0zAYB_Agijenb30lUg788eI6nyRN2rw8h86D4cQ7fRvS9umuo2tnknJ3_705WjwmQ0cgIcknDwn5EvKSwoxSJj-4osa2wBkFodLsEZlQUCJWDPhjMgHgMs4gFSfkmXMbgLCn-FNyQmnKKCTJhIhV3tS_eowuPe5uaofR9_vOtGW0sN2Nv466KvLXGF3VOfroW2M8mv45eVKZxuGLcZySH58_Xc2_xMvV4mJ-voxNSqmPqTQChJEIMjEVIjMqzEulRC4YYwJTVuZQCVUqWeYJSmHQsCoRlUqyMqV8St4NdXe2C5d0Xm9rV2DTmBa73uk04aA4TUWQb_8tGYdUMfVfyKQUkIbCU3L6F9x0vW3DczWjXIRiPAvobEBr06Cu26rz1hRrbNGapmuxqsPyeQYyoyB54PEBHlqJ27o45N_v-UA83vq16Z3TF5dfj6arn0fTj4tjabZY7tGzQ7TomgbXqEMu5qs9Pht4YTvnLFZ6Z-utsXeagr6Pth6jrYdohwOvx__o8y2WD3zMcgBvRmBcYZrKmrao3YNLKOUqg-BeDW7jfGf_7HPIBMsU_w3W6AOt</recordid><startdate>20011123</startdate><enddate>20011123</enddate><creator>Tapponnier, Paul</creator><creator>Zhiqin, Xu</creator><creator>Roger, Françoise</creator><creator>Meyer, Bertrand</creator><creator>Arnaud, Nicolas</creator><creator>Wittlinger, Gérard</creator><creator>Jingsui, Yang</creator><general>American Society for the Advancement of Science</general><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>0-V</scope><scope>3V.</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88B</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9-</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M0P</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20011123</creationdate><title>Oblique Stepwise Rise and Growth of the Tibet Plateau</title><author>Tapponnier, Paul ; Zhiqin, Xu ; Roger, Françoise ; Meyer, Bertrand ; Arnaud, Nicolas ; Wittlinger, Gérard ; Jingsui, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a711t-16a505a6e064afee2a9505d995b52225e72db0f59d96db4e65aea2f45f948d713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Cartography</topic><topic>Continental drift</topic><topic>Earth</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Evidence</topic><topic>Exact sciences and technology</topic><topic>Geology</topic><topic>India</topic><topic>Internal geophysics</topic><topic>Lithospheres</topic><topic>Mantle</topic><topic>Natural history</topic><topic>Paleogeophysics</topic><topic>Plate Tectonics</topic><topic>Plateaus</topic><topic>Review</topic><topic>Shear zones</topic><topic>Solid-earth geophysics, tectonophysics, gravimetry</topic><topic>Strike slip faults</topic><topic>Strikes</topic><topic>Subduction</topic><topic>Tectonics</topic><topic>Tectonics. Structural geology. Plate tectonics</topic><topic>Tibet</topic><topic>Topography</topic><topic>Volcanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tapponnier, Paul</creatorcontrib><creatorcontrib>Zhiqin, Xu</creatorcontrib><creatorcontrib>Roger, Françoise</creatorcontrib><creatorcontrib>Meyer, Bertrand</creatorcontrib><creatorcontrib>Arnaud, Nicolas</creatorcontrib><creatorcontrib>Wittlinger, Gérard</creatorcontrib><creatorcontrib>Jingsui, Yang</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Canada</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agriculture Science Database</collection><collection>Education Database</collection><collection>ProQuest Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tapponnier, Paul</au><au>Zhiqin, Xu</au><au>Roger, Françoise</au><au>Meyer, Bertrand</au><au>Arnaud, Nicolas</au><au>Wittlinger, Gérard</au><au>Jingsui, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oblique Stepwise Rise and Growth of the Tibet Plateau</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2001-11-23</date><risdate>2001</risdate><volume>294</volume><issue>5547</issue><spage>1671</spage><epage>1677</epage><pages>1671-1677</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Two end member models of how the high elevations in Tibet formed are (i) continuous thickening and widespread viscous flow of the crust and mantle of the entire plateau and (ii) time-dependent, localized shear between coherent lithospheric blocks. Recent studies of Cenozoic deformation, magmatism, and seismic structure lend support to the latter. Since India collided with Asia ∼55 million years ago, the rise of the high Tibetan plateau likely occurred in three main steps, by successive growth and uplift of 300- to 500-kilometer-wide crustal thrust-wedges. The crust thickened, while the mantle, decoupled beneath gently dipping shear zones, did not. Sediment infilling, bathtub-like, of dammed intermontane basins formed flat high plains at each step. The existence of magmatic belts younging northward implies that slabs of Asian mantle subducted one after another under ranges north of the Himalayas. Subduction was oblique and accompanied by extrusion along the left lateral strike-slip faults that slice Tibet's east side. These mechanisms, akin to plate tectonics hidden by thickening crust, with slip-partitioning, account for the dominant growth of the Tibet Plateau toward the east and northeast.</abstract><cop>Washington, DC</cop><pub>American Society for the Advancement of Science</pub><pmid>11721044</pmid><doi>10.1126/science.105978</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2001-11, Vol.294 (5547), p.1671-1677
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_743093175
source American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection; Social Science Premium Collection; Alma/SFX Local Collection; Education Collection
subjects Cartography
Continental drift
Earth
Earth sciences
Earth, ocean, space
Evidence
Exact sciences and technology
Geology
India
Internal geophysics
Lithospheres
Mantle
Natural history
Paleogeophysics
Plate Tectonics
Plateaus
Review
Shear zones
Solid-earth geophysics, tectonophysics, gravimetry
Strike slip faults
Strikes
Subduction
Tectonics
Tectonics. Structural geology. Plate tectonics
Tibet
Topography
Volcanism
title Oblique Stepwise Rise and Growth of the Tibet Plateau
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A48%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oblique%20Stepwise%20Rise%20and%20Growth%20of%20the%20Tibet%20Plateau&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Tapponnier,%20Paul&rft.date=2001-11-23&rft.volume=294&rft.issue=5547&rft.spage=1671&rft.epage=1677&rft.pages=1671-1677&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.105978&rft_dat=%3Cgale_proqu%3EA80681063%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a711t-16a505a6e064afee2a9505d995b52225e72db0f59d96db4e65aea2f45f948d713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213579238&rft_id=info:pmid/11721044&rft_galeid=A80681063&rft_jstor_id=3085289&rfr_iscdi=true