Loading…

Boundary-conformed machining of turbine blades

Abstract Boundary-conformed machining is a new method to mill free-form surfaces with tool paths that reflect the natural shapes of the surfaces. It is suitable for the machining of turbine blades taking into account the direction of tool marks left on the vanes. To facilitate this type of machining...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture Journal of engineering manufacture, 2005-03, Vol.219 (3), p.255-263
Main Authors: Ding, S, Yang, D C H, Han, Z
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Boundary-conformed machining is a new method to mill free-form surfaces with tool paths that reflect the natural shapes of the surfaces. It is suitable for the machining of turbine blades taking into account the direction of tool marks left on the vanes. To facilitate this type of machining, this paper introduces an application of the ‘boundary-conformed algorithm’ to generate continuous boundary-conformed flow line tool paths for the milling of blade surfaces. With this approach, the initial segment of the flow line tool paths is along the top edges of the blade while the final segment follows the intersection curves between the blade and the hub surface. The intermediate segments cover the surface by changing smoothly from the initial tool path to the final tool path. The two opposite sides of the blade, which are two trimmed surfaces, are machined together continuously from top to bottom with these continuous boundary-conformed tool paths. This method has been successfully integrated into an industrial computer-aided design and manufacture system (Pro/Engineer) by using Pro/Toolkit. A detailed algorithm and implementation processes have been introduced.
ISSN:0954-4054
2041-2975
DOI:10.1243/095440505X28981