Loading…

Consolidation and Forging Methods for a Cryomilled Al Alloy

The method used to consolidate a cryogenically ball-milled powder is critical to the retention of superior strength along with acceptable tensile ductility in the bulk product. In this study, gas-atomized Al 5083 powder was cryomilled, hot vacuum degassed, and consolidated by hot isostatic pressing...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2008-09, Vol.39 (9), p.2193-2205
Main Authors: Newbery, A.P., Ahn, B., Hayes, R.W., Pao, P.S., Nutt, S.R., Lavernia, E.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The method used to consolidate a cryogenically ball-milled powder is critical to the retention of superior strength along with acceptable tensile ductility in the bulk product. In this study, gas-atomized Al 5083 powder was cryomilled, hot vacuum degassed, and consolidated by hot isostatic pressing (HIP) or by quasi-isostatic (QI) forging to produce low-porosity billets. The billets were then forged, either at high strain rate (without a die) or quasi-isostatically, and subsequently hot rolled to produce three 6.5-mm-thick plates. Despite extended periods at elevated temperatures and differences between the consolidation/deformation methods, a similar predominantly ultrafine grain microstructure was obtained in all three plates. The plates possessed similar ultimate tensile strengths, about 50 pct greater than standard work-hardened Al 5083. However, in terms of fracture toughness, there were significant differences between the plates. Debonding at prior cryomilled powder particle surfaces was an important fracture mechanism for “HIPped” material, leading to low toughness for crack surfaces in the plane of the plate. This effect was minimized by the implementation of double QI forging, producing plate with good isotropic fracture toughness. The type of particle boundary deformation during forging and the influence of impurities appeared to be more important in determining fracture toughness than the presence of ∼10 vol pct coarser micron-sized grains.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-008-9554-x