Loading…
Efficient Removal of Impulse Noise from Highly Corrupted Digital Images by a Simple Neuro-Fuzzy Operator
A new neuro-fuzzy operator for removing impulse noise from highly corrupted digital images is presented. The proposed operator is very simple and comprises two identical neuro-fuzzy filters combined with a postprocessor. The internal parameters of the filters are adaptively adjusted by training. Tra...
Saved in:
Published in: | International journal of electronics and communications 2003, Vol.57 (3), p.214-219 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-f9a5a476cd189dfed6673f6f09895739cbf1f9218d9705f0d42be34352ef48f43 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-f9a5a476cd189dfed6673f6f09895739cbf1f9218d9705f0d42be34352ef48f43 |
container_end_page | 219 |
container_issue | 3 |
container_start_page | 214 |
container_title | International journal of electronics and communications |
container_volume | 57 |
creator | Yuksel, M Emin Basturk, Alper |
description | A new neuro-fuzzy operator for removing impulse noise from highly corrupted digital images is presented. The proposed operator is very simple and comprises two identical neuro-fuzzy filters combined with a postprocessor. The internal parameters of the filters are adaptively adjusted by training. Training of the filters is easily accomplished by using a simple computer generated artificial image. The fundamental advantage of the proposed operator over other operators is that it offers superior noise removal performance while at the same time efficiently preserving details and texture in the noisy input image. Experiments prove that the proposed operator may be used for efficient removal of impulse noise from highly corrupted images without distorting the useful information in the image. |
doi_str_mv | 10.1078/1434-8411-54100164 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743190817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1434841104701545</els_id><sourcerecordid>32018822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-f9a5a476cd189dfed6673f6f09895739cbf1f9218d9705f0d42be34352ef48f43</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhqOKSgXaP9CT1UM5pXhsx7GlXtCyW1ZCrNSPs-VNxotRsk7tBGn59ThauHDgMjOH552R_RTFV6A_gNbqEgQXpRIAZSWAUpDiQ3EKElRJudYneX4FPhVnKT1QymjN5Glxv3TONx73I_mNfXi0HQmOrPth6hKSu-BzdTH05Mbv7rsDWYQYp2HEllz7nR8zvu7tDhPZHoglf3w_dDmGUwzlanp6OpDNgNGOIX4uPjqbd3556efFv9Xy7-KmvN38Wi-ubsuGKzWWTtvKilo2LSjdOmylrLmTjmqlq5rrZuvAaQaq1TWtHG0F2yIXvGLohHKCnxcXx71DDP8nTKPpfWqw6-wew5RMLThoqqDO5Pd3Sc4oKMVYBr-9AR_CFPf5FYZRzaQENt9lR6iJIaWIzgzR9zYeDFAzOzKzAjMrMK-OcujnMYT5Rx49RpNmFw22PmIzmjb49-LPdqKWJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>209266124</pqid></control><display><type>article</type><title>Efficient Removal of Impulse Noise from Highly Corrupted Digital Images by a Simple Neuro-Fuzzy Operator</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Yuksel, M Emin ; Basturk, Alper</creator><creatorcontrib>Yuksel, M Emin ; Basturk, Alper</creatorcontrib><description>A new neuro-fuzzy operator for removing impulse noise from highly corrupted digital images is presented. The proposed operator is very simple and comprises two identical neuro-fuzzy filters combined with a postprocessor. The internal parameters of the filters are adaptively adjusted by training. Training of the filters is easily accomplished by using a simple computer generated artificial image. The fundamental advantage of the proposed operator over other operators is that it offers superior noise removal performance while at the same time efficiently preserving details and texture in the noisy input image. Experiments prove that the proposed operator may be used for efficient removal of impulse noise from highly corrupted images without distorting the useful information in the image.</description><identifier>ISSN: 1434-8411</identifier><identifier>EISSN: 1618-0399</identifier><identifier>DOI: 10.1078/1434-8411-54100164</identifier><language>eng</language><publisher>Stuttgart: Elsevier GmbH</publisher><subject>Image processing ; Neuro-fuzzy systems ; Noise filtering</subject><ispartof>International journal of electronics and communications, 2003, Vol.57 (3), p.214-219</ispartof><rights>2003 Urban & Fischer Verlag</rights><rights>Copyright Urban & Fischer Verlag 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-f9a5a476cd189dfed6673f6f09895739cbf1f9218d9705f0d42be34352ef48f43</citedby><cites>FETCH-LOGICAL-c388t-f9a5a476cd189dfed6673f6f09895739cbf1f9218d9705f0d42be34352ef48f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Yuksel, M Emin</creatorcontrib><creatorcontrib>Basturk, Alper</creatorcontrib><title>Efficient Removal of Impulse Noise from Highly Corrupted Digital Images by a Simple Neuro-Fuzzy Operator</title><title>International journal of electronics and communications</title><description>A new neuro-fuzzy operator for removing impulse noise from highly corrupted digital images is presented. The proposed operator is very simple and comprises two identical neuro-fuzzy filters combined with a postprocessor. The internal parameters of the filters are adaptively adjusted by training. Training of the filters is easily accomplished by using a simple computer generated artificial image. The fundamental advantage of the proposed operator over other operators is that it offers superior noise removal performance while at the same time efficiently preserving details and texture in the noisy input image. Experiments prove that the proposed operator may be used for efficient removal of impulse noise from highly corrupted images without distorting the useful information in the image.</description><subject>Image processing</subject><subject>Neuro-fuzzy systems</subject><subject>Noise filtering</subject><issn>1434-8411</issn><issn>1618-0399</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kU1P3DAQhqOKSgXaP9CT1UM5pXhsx7GlXtCyW1ZCrNSPs-VNxotRsk7tBGn59ThauHDgMjOH552R_RTFV6A_gNbqEgQXpRIAZSWAUpDiQ3EKElRJudYneX4FPhVnKT1QymjN5Glxv3TONx73I_mNfXi0HQmOrPth6hKSu-BzdTH05Mbv7rsDWYQYp2HEllz7nR8zvu7tDhPZHoglf3w_dDmGUwzlanp6OpDNgNGOIX4uPjqbd3556efFv9Xy7-KmvN38Wi-ubsuGKzWWTtvKilo2LSjdOmylrLmTjmqlq5rrZuvAaQaq1TWtHG0F2yIXvGLohHKCnxcXx71DDP8nTKPpfWqw6-wew5RMLThoqqDO5Pd3Sc4oKMVYBr-9AR_CFPf5FYZRzaQENt9lR6iJIaWIzgzR9zYeDFAzOzKzAjMrMK-OcujnMYT5Rx49RpNmFw22PmIzmjb49-LPdqKWJw</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Yuksel, M Emin</creator><creator>Basturk, Alper</creator><general>Elsevier GmbH</general><general>Urban & Fischer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88F</scope><scope>88K</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M1Q</scope><scope>M2T</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>2003</creationdate><title>Efficient Removal of Impulse Noise from Highly Corrupted Digital Images by a Simple Neuro-Fuzzy Operator</title><author>Yuksel, M Emin ; Basturk, Alper</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-f9a5a476cd189dfed6673f6f09895739cbf1f9218d9705f0d42be34352ef48f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Image processing</topic><topic>Neuro-fuzzy systems</topic><topic>Noise filtering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuksel, M Emin</creatorcontrib><creatorcontrib>Basturk, Alper</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Military Database</collection><collection>Telecommunications Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of electronics and communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuksel, M Emin</au><au>Basturk, Alper</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Removal of Impulse Noise from Highly Corrupted Digital Images by a Simple Neuro-Fuzzy Operator</atitle><jtitle>International journal of electronics and communications</jtitle><date>2003</date><risdate>2003</risdate><volume>57</volume><issue>3</issue><spage>214</spage><epage>219</epage><pages>214-219</pages><issn>1434-8411</issn><eissn>1618-0399</eissn><abstract>A new neuro-fuzzy operator for removing impulse noise from highly corrupted digital images is presented. The proposed operator is very simple and comprises two identical neuro-fuzzy filters combined with a postprocessor. The internal parameters of the filters are adaptively adjusted by training. Training of the filters is easily accomplished by using a simple computer generated artificial image. The fundamental advantage of the proposed operator over other operators is that it offers superior noise removal performance while at the same time efficiently preserving details and texture in the noisy input image. Experiments prove that the proposed operator may be used for efficient removal of impulse noise from highly corrupted images without distorting the useful information in the image.</abstract><cop>Stuttgart</cop><pub>Elsevier GmbH</pub><doi>10.1078/1434-8411-54100164</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-8411 |
ispartof | International journal of electronics and communications, 2003, Vol.57 (3), p.214-219 |
issn | 1434-8411 1618-0399 |
language | eng |
recordid | cdi_proquest_miscellaneous_743190817 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Image processing Neuro-fuzzy systems Noise filtering |
title | Efficient Removal of Impulse Noise from Highly Corrupted Digital Images by a Simple Neuro-Fuzzy Operator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A32%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Removal%20of%20Impulse%20Noise%20from%20Highly%20Corrupted%20Digital%20Images%20by%20a%20Simple%20Neuro-Fuzzy%20Operator&rft.jtitle=International%20journal%20of%20electronics%20and%20communications&rft.au=Yuksel,%20M%20Emin&rft.date=2003&rft.volume=57&rft.issue=3&rft.spage=214&rft.epage=219&rft.pages=214-219&rft.issn=1434-8411&rft.eissn=1618-0399&rft_id=info:doi/10.1078/1434-8411-54100164&rft_dat=%3Cproquest_cross%3E32018822%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-f9a5a476cd189dfed6673f6f09895739cbf1f9218d9705f0d42be34352ef48f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=209266124&rft_id=info:pmid/&rfr_iscdi=true |