Loading…

Efficient Removal of Impulse Noise from Highly Corrupted Digital Images by a Simple Neuro-Fuzzy Operator

A new neuro-fuzzy operator for removing impulse noise from highly corrupted digital images is presented. The proposed operator is very simple and comprises two identical neuro-fuzzy filters combined with a postprocessor. The internal parameters of the filters are adaptively adjusted by training. Tra...

Full description

Saved in:
Bibliographic Details
Published in:International journal of electronics and communications 2003, Vol.57 (3), p.214-219
Main Authors: Yuksel, M Emin, Basturk, Alper
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-f9a5a476cd189dfed6673f6f09895739cbf1f9218d9705f0d42be34352ef48f43
cites cdi_FETCH-LOGICAL-c388t-f9a5a476cd189dfed6673f6f09895739cbf1f9218d9705f0d42be34352ef48f43
container_end_page 219
container_issue 3
container_start_page 214
container_title International journal of electronics and communications
container_volume 57
creator Yuksel, M Emin
Basturk, Alper
description A new neuro-fuzzy operator for removing impulse noise from highly corrupted digital images is presented. The proposed operator is very simple and comprises two identical neuro-fuzzy filters combined with a postprocessor. The internal parameters of the filters are adaptively adjusted by training. Training of the filters is easily accomplished by using a simple computer generated artificial image. The fundamental advantage of the proposed operator over other operators is that it offers superior noise removal performance while at the same time efficiently preserving details and texture in the noisy input image. Experiments prove that the proposed operator may be used for efficient removal of impulse noise from highly corrupted images without distorting the useful information in the image.
doi_str_mv 10.1078/1434-8411-54100164
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743190817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1434841104701545</els_id><sourcerecordid>32018822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-f9a5a476cd189dfed6673f6f09895739cbf1f9218d9705f0d42be34352ef48f43</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhqOKSgXaP9CT1UM5pXhsx7GlXtCyW1ZCrNSPs-VNxotRsk7tBGn59ThauHDgMjOH552R_RTFV6A_gNbqEgQXpRIAZSWAUpDiQ3EKElRJudYneX4FPhVnKT1QymjN5Glxv3TONx73I_mNfXi0HQmOrPth6hKSu-BzdTH05Mbv7rsDWYQYp2HEllz7nR8zvu7tDhPZHoglf3w_dDmGUwzlanp6OpDNgNGOIX4uPjqbd3556efFv9Xy7-KmvN38Wi-ubsuGKzWWTtvKilo2LSjdOmylrLmTjmqlq5rrZuvAaQaq1TWtHG0F2yIXvGLohHKCnxcXx71DDP8nTKPpfWqw6-wew5RMLThoqqDO5Pd3Sc4oKMVYBr-9AR_CFPf5FYZRzaQENt9lR6iJIaWIzgzR9zYeDFAzOzKzAjMrMK-OcujnMYT5Rx49RpNmFw22PmIzmjb49-LPdqKWJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>209266124</pqid></control><display><type>article</type><title>Efficient Removal of Impulse Noise from Highly Corrupted Digital Images by a Simple Neuro-Fuzzy Operator</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Yuksel, M Emin ; Basturk, Alper</creator><creatorcontrib>Yuksel, M Emin ; Basturk, Alper</creatorcontrib><description>A new neuro-fuzzy operator for removing impulse noise from highly corrupted digital images is presented. The proposed operator is very simple and comprises two identical neuro-fuzzy filters combined with a postprocessor. The internal parameters of the filters are adaptively adjusted by training. Training of the filters is easily accomplished by using a simple computer generated artificial image. The fundamental advantage of the proposed operator over other operators is that it offers superior noise removal performance while at the same time efficiently preserving details and texture in the noisy input image. Experiments prove that the proposed operator may be used for efficient removal of impulse noise from highly corrupted images without distorting the useful information in the image.</description><identifier>ISSN: 1434-8411</identifier><identifier>EISSN: 1618-0399</identifier><identifier>DOI: 10.1078/1434-8411-54100164</identifier><language>eng</language><publisher>Stuttgart: Elsevier GmbH</publisher><subject>Image processing ; Neuro-fuzzy systems ; Noise filtering</subject><ispartof>International journal of electronics and communications, 2003, Vol.57 (3), p.214-219</ispartof><rights>2003 Urban &amp; Fischer Verlag</rights><rights>Copyright Urban &amp; Fischer Verlag 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-f9a5a476cd189dfed6673f6f09895739cbf1f9218d9705f0d42be34352ef48f43</citedby><cites>FETCH-LOGICAL-c388t-f9a5a476cd189dfed6673f6f09895739cbf1f9218d9705f0d42be34352ef48f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Yuksel, M Emin</creatorcontrib><creatorcontrib>Basturk, Alper</creatorcontrib><title>Efficient Removal of Impulse Noise from Highly Corrupted Digital Images by a Simple Neuro-Fuzzy Operator</title><title>International journal of electronics and communications</title><description>A new neuro-fuzzy operator for removing impulse noise from highly corrupted digital images is presented. The proposed operator is very simple and comprises two identical neuro-fuzzy filters combined with a postprocessor. The internal parameters of the filters are adaptively adjusted by training. Training of the filters is easily accomplished by using a simple computer generated artificial image. The fundamental advantage of the proposed operator over other operators is that it offers superior noise removal performance while at the same time efficiently preserving details and texture in the noisy input image. Experiments prove that the proposed operator may be used for efficient removal of impulse noise from highly corrupted images without distorting the useful information in the image.</description><subject>Image processing</subject><subject>Neuro-fuzzy systems</subject><subject>Noise filtering</subject><issn>1434-8411</issn><issn>1618-0399</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kU1P3DAQhqOKSgXaP9CT1UM5pXhsx7GlXtCyW1ZCrNSPs-VNxotRsk7tBGn59ThauHDgMjOH552R_RTFV6A_gNbqEgQXpRIAZSWAUpDiQ3EKElRJudYneX4FPhVnKT1QymjN5Glxv3TONx73I_mNfXi0HQmOrPth6hKSu-BzdTH05Mbv7rsDWYQYp2HEllz7nR8zvu7tDhPZHoglf3w_dDmGUwzlanp6OpDNgNGOIX4uPjqbd3556efFv9Xy7-KmvN38Wi-ubsuGKzWWTtvKilo2LSjdOmylrLmTjmqlq5rrZuvAaQaq1TWtHG0F2yIXvGLohHKCnxcXx71DDP8nTKPpfWqw6-wew5RMLThoqqDO5Pd3Sc4oKMVYBr-9AR_CFPf5FYZRzaQENt9lR6iJIaWIzgzR9zYeDFAzOzKzAjMrMK-OcujnMYT5Rx49RpNmFw22PmIzmjb49-LPdqKWJw</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Yuksel, M Emin</creator><creator>Basturk, Alper</creator><general>Elsevier GmbH</general><general>Urban &amp; Fischer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88F</scope><scope>88K</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M1Q</scope><scope>M2T</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>2003</creationdate><title>Efficient Removal of Impulse Noise from Highly Corrupted Digital Images by a Simple Neuro-Fuzzy Operator</title><author>Yuksel, M Emin ; Basturk, Alper</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-f9a5a476cd189dfed6673f6f09895739cbf1f9218d9705f0d42be34352ef48f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Image processing</topic><topic>Neuro-fuzzy systems</topic><topic>Noise filtering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuksel, M Emin</creatorcontrib><creatorcontrib>Basturk, Alper</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Military Database</collection><collection>Telecommunications Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of electronics and communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuksel, M Emin</au><au>Basturk, Alper</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Removal of Impulse Noise from Highly Corrupted Digital Images by a Simple Neuro-Fuzzy Operator</atitle><jtitle>International journal of electronics and communications</jtitle><date>2003</date><risdate>2003</risdate><volume>57</volume><issue>3</issue><spage>214</spage><epage>219</epage><pages>214-219</pages><issn>1434-8411</issn><eissn>1618-0399</eissn><abstract>A new neuro-fuzzy operator for removing impulse noise from highly corrupted digital images is presented. The proposed operator is very simple and comprises two identical neuro-fuzzy filters combined with a postprocessor. The internal parameters of the filters are adaptively adjusted by training. Training of the filters is easily accomplished by using a simple computer generated artificial image. The fundamental advantage of the proposed operator over other operators is that it offers superior noise removal performance while at the same time efficiently preserving details and texture in the noisy input image. Experiments prove that the proposed operator may be used for efficient removal of impulse noise from highly corrupted images without distorting the useful information in the image.</abstract><cop>Stuttgart</cop><pub>Elsevier GmbH</pub><doi>10.1078/1434-8411-54100164</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1434-8411
ispartof International journal of electronics and communications, 2003, Vol.57 (3), p.214-219
issn 1434-8411
1618-0399
language eng
recordid cdi_proquest_miscellaneous_743190817
source ScienceDirect Freedom Collection 2022-2024
subjects Image processing
Neuro-fuzzy systems
Noise filtering
title Efficient Removal of Impulse Noise from Highly Corrupted Digital Images by a Simple Neuro-Fuzzy Operator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A32%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Removal%20of%20Impulse%20Noise%20from%20Highly%20Corrupted%20Digital%20Images%20by%20a%20Simple%20Neuro-Fuzzy%20Operator&rft.jtitle=International%20journal%20of%20electronics%20and%20communications&rft.au=Yuksel,%20M%20Emin&rft.date=2003&rft.volume=57&rft.issue=3&rft.spage=214&rft.epage=219&rft.pages=214-219&rft.issn=1434-8411&rft.eissn=1618-0399&rft_id=info:doi/10.1078/1434-8411-54100164&rft_dat=%3Cproquest_cross%3E32018822%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-f9a5a476cd189dfed6673f6f09895739cbf1f9218d9705f0d42be34352ef48f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=209266124&rft_id=info:pmid/&rfr_iscdi=true