Loading…
How Mantle Slabs Drive Plate Tectonics
The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached s...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2002-10, Vol.298 (5591), p.207-209 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a892t-f5c5a3725878357d2bc6d3731da77a9b3bcf5ba5cc8559b2ebbe6cffb060e2253 |
---|---|
cites | cdi_FETCH-LOGICAL-a892t-f5c5a3725878357d2bc6d3731da77a9b3bcf5ba5cc8559b2ebbe6cffb060e2253 |
container_end_page | 209 |
container_issue | 5591 |
container_start_page | 207 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 298 |
creator | Conrad, Clinton P. Lithgow-Bertelloni, Carolina |
description | The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction. |
doi_str_mv | 10.1126/science.1074161 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743241016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A93457161</galeid><jstor_id>3832732</jstor_id><sourcerecordid>A93457161</sourcerecordid><originalsourceid>FETCH-LOGICAL-a892t-f5c5a3725878357d2bc6d3731da77a9b3bcf5ba5cc8559b2ebbe6cffb060e2253</originalsourceid><addsrcrecordid>eNqN089v0zAUB3ALgVgZnLkgVCExdlg2_4h_HbcC3aRCkTa4Wo7zUqVyk2EnA_57XDViKqq2ygdLfh_74Pe-CL0m-JQQKs6iq6FxcEqwzIkgT9CIYM0zTTF7ikYYM5EpLPkBehHjEuNU0-w5OiCUiVzhfISOLttf4y-26TyMr70t4vhjqO9g_M3bDsY34Lq2qV18iZ5V1kd4NeyH6PvnTzeTy2w2n15NzmeZVZp2WcUdt0xSrqRiXJa0cKJkkpHSSml1wQpX8cJy5xTnuqBQFCBcVRVYYKCUs0P0YfPubWh_9hA7s6qjA-9tA20fjcwZzQkmIsmjhyUlXGCSPwqpJFIojfeCOWXqUUhUrgXD6xePH4ZC8Fyp1JZE3_1Hl20fmvTXhhImSOrkGp1s0MJ6MHVTtV2wbgENBOvbBqo6HZ9rlnOZhiHxbAdPq4RV7Xb54y2fSAe_u4XtYzRX11_3pvMfe9OL6b5UTWdb9GQXda33sACThnIy3-JnG-5CG2OAytyGemXDH0OwWSfJDEkyQ5LSjbdDQ_piBeW9H6KTwPsB2Oisr4JtXB3vHdNCY7we6Tcbt4xdG_7V0xxRySj7C040J5s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213610369</pqid></control><display><type>article</type><title>How Mantle Slabs Drive Plate Tectonics</title><source>American Association for the Advancement of Science</source><source>Education Collection (Proquest) (PQ_SDU_P3)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><source>Alma/SFX Local Collection</source><creator>Conrad, Clinton P. ; Lithgow-Bertelloni, Carolina</creator><creatorcontrib>Conrad, Clinton P. ; Lithgow-Bertelloni, Carolina</creatorcontrib><description>The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1074161</identifier><identifier>PMID: 12364804</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Analysis ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fractions ; Geology ; Internal geophysics ; Kinetics ; Mantle ; Mantle convection ; Mechanics ; Motion ; Plate tectonics ; Rollbacks ; Solid-earth geophysics, tectonophysics, gravimetry ; Speed ; Subduction ; Subduction zones ; Surface (Geology) ; Surgical suction ; Tectonics. Structural geology. Plate tectonics ; Velocity distribution</subject><ispartof>Science (American Association for the Advancement of Science), 2002-10, Vol.298 (5591), p.207-209</ispartof><rights>Copyright 2002 American Association for the Advancement of Science</rights><rights>2002 INIST-CNRS</rights><rights>COPYRIGHT 2002 American Association for the Advancement of Science</rights><rights>COPYRIGHT 2002 American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Oct 4, 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a892t-f5c5a3725878357d2bc6d3731da77a9b3bcf5ba5cc8559b2ebbe6cffb060e2253</citedby><cites>FETCH-LOGICAL-a892t-f5c5a3725878357d2bc6d3731da77a9b3bcf5ba5cc8559b2ebbe6cffb060e2253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/213610369/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/213610369?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,2884,2885,21378,21394,27924,27925,33611,33612,33877,33878,43733,43880,58238,58471,74221,74397</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13969005$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12364804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Conrad, Clinton P.</creatorcontrib><creatorcontrib>Lithgow-Bertelloni, Carolina</creatorcontrib><title>How Mantle Slabs Drive Plate Tectonics</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction.</description><subject>Analysis</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fractions</subject><subject>Geology</subject><subject>Internal geophysics</subject><subject>Kinetics</subject><subject>Mantle</subject><subject>Mantle convection</subject><subject>Mechanics</subject><subject>Motion</subject><subject>Plate tectonics</subject><subject>Rollbacks</subject><subject>Solid-earth geophysics, tectonophysics, gravimetry</subject><subject>Speed</subject><subject>Subduction</subject><subject>Subduction zones</subject><subject>Surface (Geology)</subject><subject>Surgical suction</subject><subject>Tectonics. Structural geology. Plate tectonics</subject><subject>Velocity distribution</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>CJNVE</sourceid><sourceid>M0P</sourceid><recordid>eNqN089v0zAUB3ALgVgZnLkgVCExdlg2_4h_HbcC3aRCkTa4Wo7zUqVyk2EnA_57XDViKqq2ygdLfh_74Pe-CL0m-JQQKs6iq6FxcEqwzIkgT9CIYM0zTTF7ikYYM5EpLPkBehHjEuNU0-w5OiCUiVzhfISOLttf4y-26TyMr70t4vhjqO9g_M3bDsY34Lq2qV18iZ5V1kd4NeyH6PvnTzeTy2w2n15NzmeZVZp2WcUdt0xSrqRiXJa0cKJkkpHSSml1wQpX8cJy5xTnuqBQFCBcVRVYYKCUs0P0YfPubWh_9hA7s6qjA-9tA20fjcwZzQkmIsmjhyUlXGCSPwqpJFIojfeCOWXqUUhUrgXD6xePH4ZC8Fyp1JZE3_1Hl20fmvTXhhImSOrkGp1s0MJ6MHVTtV2wbgENBOvbBqo6HZ9rlnOZhiHxbAdPq4RV7Xb54y2fSAe_u4XtYzRX11_3pvMfe9OL6b5UTWdb9GQXda33sACThnIy3-JnG-5CG2OAytyGemXDH0OwWSfJDEkyQ5LSjbdDQ_piBeW9H6KTwPsB2Oisr4JtXB3vHdNCY7we6Tcbt4xdG_7V0xxRySj7C040J5s</recordid><startdate>20021004</startdate><enddate>20021004</enddate><creator>Conrad, Clinton P.</creator><creator>Lithgow-Bertelloni, Carolina</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>0-V</scope><scope>3V.</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88B</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9-</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M0P</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SM</scope><scope>7X8</scope></search><sort><creationdate>20021004</creationdate><title>How Mantle Slabs Drive Plate Tectonics</title><author>Conrad, Clinton P. ; Lithgow-Bertelloni, Carolina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a892t-f5c5a3725878357d2bc6d3731da77a9b3bcf5ba5cc8559b2ebbe6cffb060e2253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Analysis</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fractions</topic><topic>Geology</topic><topic>Internal geophysics</topic><topic>Kinetics</topic><topic>Mantle</topic><topic>Mantle convection</topic><topic>Mechanics</topic><topic>Motion</topic><topic>Plate tectonics</topic><topic>Rollbacks</topic><topic>Solid-earth geophysics, tectonophysics, gravimetry</topic><topic>Speed</topic><topic>Subduction</topic><topic>Subduction zones</topic><topic>Surface (Geology)</topic><topic>Surgical suction</topic><topic>Tectonics. Structural geology. Plate tectonics</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conrad, Clinton P.</creatorcontrib><creatorcontrib>Lithgow-Bertelloni, Carolina</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Biography resource center</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Education Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agricultural Science Database</collection><collection>Education Database</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earthquake Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conrad, Clinton P.</au><au>Lithgow-Bertelloni, Carolina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Mantle Slabs Drive Plate Tectonics</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2002-10-04</date><risdate>2002</risdate><volume>298</volume><issue>5591</issue><spage>207</spage><epage>209</epage><pages>207-209</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>12364804</pmid><doi>10.1126/science.1074161</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2002-10, Vol.298 (5591), p.207-209 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_743241016 |
source | American Association for the Advancement of Science; Education Collection (Proquest) (PQ_SDU_P3); JSTOR Archival Journals and Primary Sources Collection; Social Science Premium Collection (Proquest) (PQ_SDU_P3); Alma/SFX Local Collection |
subjects | Analysis Earth sciences Earth, ocean, space Exact sciences and technology Fractions Geology Internal geophysics Kinetics Mantle Mantle convection Mechanics Motion Plate tectonics Rollbacks Solid-earth geophysics, tectonophysics, gravimetry Speed Subduction Subduction zones Surface (Geology) Surgical suction Tectonics. Structural geology. Plate tectonics Velocity distribution |
title | How Mantle Slabs Drive Plate Tectonics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Mantle%20Slabs%20Drive%20Plate%20Tectonics&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Conrad,%20Clinton%20P.&rft.date=2002-10-04&rft.volume=298&rft.issue=5591&rft.spage=207&rft.epage=209&rft.pages=207-209&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1074161&rft_dat=%3Cgale_proqu%3EA93457161%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a892t-f5c5a3725878357d2bc6d3731da77a9b3bcf5ba5cc8559b2ebbe6cffb060e2253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213610369&rft_id=info:pmid/12364804&rft_galeid=A93457161&rft_jstor_id=3832732&rfr_iscdi=true |