Loading…

Laccase catalyzed covalent coupling of fluorophenols increases lignocellulose surface hydrophobicity

This work presents for the first time the mechanistic evidence of a laccase-catalyzed method of covalently grafting hydrophobicity enhancing fluorophenols onto Fagus sylvatica veneers. Coupling of fluorophenols onto complex lignin model compounds guaiacylglycerol β-guaiacyl ether and syringylglycero...

Full description

Saved in:
Bibliographic Details
Published in:Bioresource technology 2010-04, Vol.101 (8), p.2793-2799
Main Authors: Kudanga, Tukayi, Prasetyo, Endry Nugroho, Widsten, Petri, Kandelbauer, Andreas, Jury, Sandra, Heathcote, Carol, Sipilä, Jussi, Weber, Hansjoerg, Nyanhongo, Gibson S., Guebitz, Georg M.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work presents for the first time the mechanistic evidence of a laccase-catalyzed method of covalently grafting hydrophobicity enhancing fluorophenols onto Fagus sylvatica veneers. Coupling of fluorophenols onto complex lignin model compounds guaiacylglycerol β-guaiacyl ether and syringylglycerol β-guaiacyl ether was demonstrated by LC–MS and NMR. Laccase-mediated coupling increased binding of 4-[4-(trifluoromethyl)phenoxy]phenol (4,4-F3MPP) and 4-(trifluoromethoxy)phenol (4-F3MP) to veneers by 77.1% and 39.2%, respectively. XPS studies showed that laccase-catalyzed grafting of fluorophenols resulted in a fluorine content of 6.39% for 4,4-F3MPP, 3.01% for 4-F3MP and 0.26% for 4-fluoro-2-methylphenol (4,2-FMP). Grafting of the fluorophenols 4,2-FMP, 4-F3MP and 4,4-F3MPP led to a 9.6%, 28.6% and 65.5% increase in hydrophobicity, respectively, when compared to treatments with the respective fluorophenols in the absence of laccase, in good agreement with XPS data.
ISSN:0960-8524
1873-2976
DOI:10.1016/j.biortech.2009.12.002