Loading…
Laccase catalyzed covalent coupling of fluorophenols increases lignocellulose surface hydrophobicity
This work presents for the first time the mechanistic evidence of a laccase-catalyzed method of covalently grafting hydrophobicity enhancing fluorophenols onto Fagus sylvatica veneers. Coupling of fluorophenols onto complex lignin model compounds guaiacylglycerol β-guaiacyl ether and syringylglycero...
Saved in:
Published in: | Bioresource technology 2010-04, Vol.101 (8), p.2793-2799 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work presents for the first time the mechanistic evidence of a laccase-catalyzed method of covalently grafting hydrophobicity enhancing fluorophenols onto
Fagus sylvatica veneers. Coupling of fluorophenols onto complex lignin model compounds guaiacylglycerol β-guaiacyl ether and syringylglycerol β-guaiacyl ether was demonstrated by LC–MS and NMR. Laccase-mediated coupling increased binding of 4-[4-(trifluoromethyl)phenoxy]phenol (4,4-F3MPP) and 4-(trifluoromethoxy)phenol (4-F3MP) to veneers by 77.1% and 39.2%, respectively. XPS studies showed that laccase-catalyzed grafting of fluorophenols resulted in a fluorine content of 6.39% for 4,4-F3MPP, 3.01% for 4-F3MP and 0.26% for 4-fluoro-2-methylphenol (4,2-FMP). Grafting of the fluorophenols 4,2-FMP, 4-F3MP and 4,4-F3MPP led to a 9.6%, 28.6% and 65.5% increase in hydrophobicity, respectively, when compared to treatments with the respective fluorophenols in the absence of laccase, in good agreement with XPS data. |
---|---|
ISSN: | 0960-8524 1873-2976 |
DOI: | 10.1016/j.biortech.2009.12.002 |