Loading…
microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity
In both animals and plants, many developmentally important regulatory genes have complementary microRNAs (miRNAs), which suggests that these miRNAs constitute a class of developmental signalling molecules. Leaves of higher plants exhibit a varying degree of asymmetry along the adaxial/abaxial (upper...
Saved in:
Published in: | Nature 2004-03, Vol.428 (6978), p.84-88 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In both animals and plants, many developmentally important regulatory genes have complementary microRNAs (miRNAs), which suggests that these miRNAs constitute a class of developmental signalling molecules. Leaves of higher plants exhibit a varying degree of asymmetry along the adaxial/abaxial (upper/lower) axis. This asymmetry is specified through the polarized expression of class III homeodomain/leucine zipper (HD-ZIPIII) genes. In Arabidopsis, three such genes, PHABULOSA (PHB), PHAVOLUTA (PHV) and REVOLUTA (REV), are expressed throughout the incipient leaf, but become adaxially localized after primordium emergence. Downregulation of the HD-ZIPIII genes allows expression of the KANADI and YABBY genes, which specify abaxial fate. PHB, PHV and REV transcripts contain a complementary site for miRNA165 and miRNA166, which can direct their cleavage in vitro. Here we show that miRNA166 constitutes a highly conserved polarizing signal whose expression pattern spatially defines the expression domain of the maize hd-zipIII family member rolled leaf1 (rld1). Moreover, the progressively expanding expression pattern of miRNA166 during leaf development and its accumulation in phloem suggests that miRNA166 may form a movable signal that emanates from a signalling centre below the incipient leaf. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/nature02363 |