Loading…

Modeling of Heat Conduction in Thermoplastic Honeycomb Core/Face Sheet Fusion Bonding

Honeycomb sandwich materials have been widely used in aerospace industry as secondary structural materials or interior panels. Recently the research of full thermoplastic honeycomb sandwich materials has been of interest due to their recyclability. In their production, they usually demand an adhesiv...

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of aeronautics 2009-12, Vol.22 (6), p.685-690
Main Authors: Xinyu, Fan, Yubin, Li, Juan, Li, Chun, Yan, Ke, Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Honeycomb sandwich materials have been widely used in aerospace industry as secondary structural materials or interior panels. Recently the research of full thermoplastic honeycomb sandwich materials has been of interest due to their recyclability. In their production, they usually demand an adhesive-free process, namely fusion bonding, to connect thermoplastic honeycomb core and face sheets. It is a heat induced process where a parameter of temperature should be well controlled to guarantee the product quality. This article presents a mathematical model of heat conduction to analyze the transient temperature distribution from heating tools towards inner part of the core under fusion bonding conditions. In order to simplify the complexity of 3D honeycomb geometry, a homogenization method is used to obtain average thermal properties of the honeycomb along the major heat flux direction. The model is validated by comparing with the results of in-situ temperature measurement during fusion bonding. The presented model can also be applied to analyzing general out-of-plane heat conduction through honeycomb sandwich structures made from other materials.
ISSN:1000-9361
DOI:10.1016/S1000-9361(08)60159-4