Loading…

Incremental identification of fluid multi-phase reaction systems

Despite their importance, rigorous process models are rarely available for reaction and especially multi‐phase reaction systems. The high complexity of these systems, which is due to the superposed effects of mass transfer and intrinsic reaction, is the major barrier for the development of process m...

Full description

Saved in:
Bibliographic Details
Published in:AIChE journal 2009-04, Vol.55 (4), p.1009-1022
Main Authors: Michalik, Claas, Brendel, Marc, Marquardt, Wolfgang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4278-2f948e7c30d6c517deb42bf2120c70dc8810a3c6a6a0b847b136ae1f11971c2d3
cites cdi_FETCH-LOGICAL-c4278-2f948e7c30d6c517deb42bf2120c70dc8810a3c6a6a0b847b136ae1f11971c2d3
container_end_page 1022
container_issue 4
container_start_page 1009
container_title AIChE journal
container_volume 55
creator Michalik, Claas
Brendel, Marc
Marquardt, Wolfgang
description Despite their importance, rigorous process models are rarely available for reaction and especially multi‐phase reaction systems. The high complexity of these systems, which is due to the superposed effects of mass transfer and intrinsic reaction, is the major barrier for the development of process models. A methodology that allows thesystematic decomposition of mass transfer and chemical reaction and thus enables the efficient identification of multi‐phase reaction systems is proposed in this work. The method is based on the so‐called Incremental Identification Method, recently presented by Brendel et al., Chem Eng Sci. 2006;61:5404‐5420. The method allows to easily test the identifiability of a system based on the available measurement data. If identifiability is given, the intrinsic reaction kinetics can be identified in a sound and numerically robust manner. These benefits are illustrated using a simulated 2‐phase enzyme reaction system. © 2009 American Institute of Chemical Engineers AIChE J, 2009
doi_str_mv 10.1002/aic.11738
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743314240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33786542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4278-2f948e7c30d6c517deb42bf2120c70dc8810a3c6a6a0b847b136ae1f11971c2d3</originalsourceid><addsrcrecordid>eNp9kElPwzAQhS0EEmU58A8iJEAcAh4vcXIDVSyVEBwoy81yHVu4ZCl2Iui_x7TQAxKcRjPzvTeah9Ae4BPAmJwqp08ABM3X0AA4EykvMF9HA4wxpHEAm2grhGnsiMjJAJ2NGu1NbZpOVYkrY3XWadW5tklam9iqd2VS91Xn0tmLCibxRunFNsxDZ-qwgzasqoLZ_a7b6OHyYjy8Tm_urkbD85tUs3gpJbZguRGa4jLTHERpJoxMLAGCtcClznPAiupMZQpPciYmQDNlwAIUAjQp6TY6WvrOfPvWm9DJ2gVtqko1pu2DFIxSYIThSB7-S1Iq8owzEsH9X-C07X0Tv5BQFJQXFOcROl5C2rcheGPlzLta-bkELL8ilzFyuYg8sgffhipoVVmvGu3CShCfLRinPHKnS-7dVWb-t6E8Hw1_nNOlwsXQP1YK5V9lJqjg8un2Sj7esuz5cXwvL-knZTOdOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199359308</pqid></control><display><type>article</type><title>Incremental identification of fluid multi-phase reaction systems</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Michalik, Claas ; Brendel, Marc ; Marquardt, Wolfgang</creator><creatorcontrib>Michalik, Claas ; Brendel, Marc ; Marquardt, Wolfgang</creatorcontrib><description>Despite their importance, rigorous process models are rarely available for reaction and especially multi‐phase reaction systems. The high complexity of these systems, which is due to the superposed effects of mass transfer and intrinsic reaction, is the major barrier for the development of process models. A methodology that allows thesystematic decomposition of mass transfer and chemical reaction and thus enables the efficient identification of multi‐phase reaction systems is proposed in this work. The method is based on the so‐called Incremental Identification Method, recently presented by Brendel et al., Chem Eng Sci. 2006;61:5404‐5420. The method allows to easily test the identifiability of a system based on the available measurement data. If identifiability is given, the intrinsic reaction kinetics can be identified in a sound and numerically robust manner. These benefits are illustrated using a simulated 2‐phase enzyme reaction system. © 2009 American Institute of Chemical Engineers AIChE J, 2009</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.11738</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; biocatalysis ; Catalysis ; Chemical engineering ; Chemical reactions ; Enzymes ; Exact sciences and technology ; Fluids ; Heat and mass transfer. Packings, plates ; intrinsic reaction kinetics ; Methods ; model identification ; multi-phase ; parameter estimation ; Reaction kinetics ; reaction modeling ; Reactors</subject><ispartof>AIChE journal, 2009-04, Vol.55 (4), p.1009-1022</ispartof><rights>Copyright © 2009 American Institute of Chemical Engineers (AIChE)</rights><rights>2009 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Apr 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4278-2f948e7c30d6c517deb42bf2120c70dc8810a3c6a6a0b847b136ae1f11971c2d3</citedby><cites>FETCH-LOGICAL-c4278-2f948e7c30d6c517deb42bf2120c70dc8810a3c6a6a0b847b136ae1f11971c2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21294535$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Michalik, Claas</creatorcontrib><creatorcontrib>Brendel, Marc</creatorcontrib><creatorcontrib>Marquardt, Wolfgang</creatorcontrib><title>Incremental identification of fluid multi-phase reaction systems</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Despite their importance, rigorous process models are rarely available for reaction and especially multi‐phase reaction systems. The high complexity of these systems, which is due to the superposed effects of mass transfer and intrinsic reaction, is the major barrier for the development of process models. A methodology that allows thesystematic decomposition of mass transfer and chemical reaction and thus enables the efficient identification of multi‐phase reaction systems is proposed in this work. The method is based on the so‐called Incremental Identification Method, recently presented by Brendel et al., Chem Eng Sci. 2006;61:5404‐5420. The method allows to easily test the identifiability of a system based on the available measurement data. If identifiability is given, the intrinsic reaction kinetics can be identified in a sound and numerically robust manner. These benefits are illustrated using a simulated 2‐phase enzyme reaction system. © 2009 American Institute of Chemical Engineers AIChE J, 2009</description><subject>Applied sciences</subject><subject>biocatalysis</subject><subject>Catalysis</subject><subject>Chemical engineering</subject><subject>Chemical reactions</subject><subject>Enzymes</subject><subject>Exact sciences and technology</subject><subject>Fluids</subject><subject>Heat and mass transfer. Packings, plates</subject><subject>intrinsic reaction kinetics</subject><subject>Methods</subject><subject>model identification</subject><subject>multi-phase</subject><subject>parameter estimation</subject><subject>Reaction kinetics</subject><subject>reaction modeling</subject><subject>Reactors</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kElPwzAQhS0EEmU58A8iJEAcAh4vcXIDVSyVEBwoy81yHVu4ZCl2Iui_x7TQAxKcRjPzvTeah9Ae4BPAmJwqp08ABM3X0AA4EykvMF9HA4wxpHEAm2grhGnsiMjJAJ2NGu1NbZpOVYkrY3XWadW5tklam9iqd2VS91Xn0tmLCibxRunFNsxDZ-qwgzasqoLZ_a7b6OHyYjy8Tm_urkbD85tUs3gpJbZguRGa4jLTHERpJoxMLAGCtcClznPAiupMZQpPciYmQDNlwAIUAjQp6TY6WvrOfPvWm9DJ2gVtqko1pu2DFIxSYIThSB7-S1Iq8owzEsH9X-C07X0Tv5BQFJQXFOcROl5C2rcheGPlzLta-bkELL8ilzFyuYg8sgffhipoVVmvGu3CShCfLRinPHKnS-7dVWb-t6E8Hw1_nNOlwsXQP1YK5V9lJqjg8un2Sj7esuz5cXwvL-knZTOdOg</recordid><startdate>200904</startdate><enddate>200904</enddate><creator>Michalik, Claas</creator><creator>Brendel, Marc</creator><creator>Marquardt, Wolfgang</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>200904</creationdate><title>Incremental identification of fluid multi-phase reaction systems</title><author>Michalik, Claas ; Brendel, Marc ; Marquardt, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4278-2f948e7c30d6c517deb42bf2120c70dc8810a3c6a6a0b847b136ae1f11971c2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>biocatalysis</topic><topic>Catalysis</topic><topic>Chemical engineering</topic><topic>Chemical reactions</topic><topic>Enzymes</topic><topic>Exact sciences and technology</topic><topic>Fluids</topic><topic>Heat and mass transfer. Packings, plates</topic><topic>intrinsic reaction kinetics</topic><topic>Methods</topic><topic>model identification</topic><topic>multi-phase</topic><topic>parameter estimation</topic><topic>Reaction kinetics</topic><topic>reaction modeling</topic><topic>Reactors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michalik, Claas</creatorcontrib><creatorcontrib>Brendel, Marc</creatorcontrib><creatorcontrib>Marquardt, Wolfgang</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michalik, Claas</au><au>Brendel, Marc</au><au>Marquardt, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incremental identification of fluid multi-phase reaction systems</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2009-04</date><risdate>2009</risdate><volume>55</volume><issue>4</issue><spage>1009</spage><epage>1022</epage><pages>1009-1022</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Despite their importance, rigorous process models are rarely available for reaction and especially multi‐phase reaction systems. The high complexity of these systems, which is due to the superposed effects of mass transfer and intrinsic reaction, is the major barrier for the development of process models. A methodology that allows thesystematic decomposition of mass transfer and chemical reaction and thus enables the efficient identification of multi‐phase reaction systems is proposed in this work. The method is based on the so‐called Incremental Identification Method, recently presented by Brendel et al., Chem Eng Sci. 2006;61:5404‐5420. The method allows to easily test the identifiability of a system based on the available measurement data. If identifiability is given, the intrinsic reaction kinetics can be identified in a sound and numerically robust manner. These benefits are illustrated using a simulated 2‐phase enzyme reaction system. © 2009 American Institute of Chemical Engineers AIChE J, 2009</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.11738</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2009-04, Vol.55 (4), p.1009-1022
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_743314240
source Wiley-Blackwell Read & Publish Collection
subjects Applied sciences
biocatalysis
Catalysis
Chemical engineering
Chemical reactions
Enzymes
Exact sciences and technology
Fluids
Heat and mass transfer. Packings, plates
intrinsic reaction kinetics
Methods
model identification
multi-phase
parameter estimation
Reaction kinetics
reaction modeling
Reactors
title Incremental identification of fluid multi-phase reaction systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A29%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incremental%20identification%20of%20fluid%20multi-phase%20reaction%20systems&rft.jtitle=AIChE%20journal&rft.au=Michalik,%20Claas&rft.date=2009-04&rft.volume=55&rft.issue=4&rft.spage=1009&rft.epage=1022&rft.pages=1009-1022&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.11738&rft_dat=%3Cproquest_cross%3E33786542%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4278-2f948e7c30d6c517deb42bf2120c70dc8810a3c6a6a0b847b136ae1f11971c2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=199359308&rft_id=info:pmid/&rfr_iscdi=true