Loading…
An Efficient Antibody-Catalyzed Aminoacylation Reaction
An antibody generated against a neutral phosphonate diester transition-state analog was found to catalyze the aminoacylation of the 3′-hydroxyl group of thymidine with an alanyl ester. A comparison of the apparent second-order rate constant of the antibody-catalyzed reaction [5.4 × 10$^4$ molar$^{-1...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 1992-04, Vol.256 (5055), p.365-367 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c782t-dfd2e612ff389f4fccf03cf84c856479cfad3d93e0a07d03df627b84b8b6dec63 |
---|---|
cites | cdi_FETCH-LOGICAL-c782t-dfd2e612ff389f4fccf03cf84c856479cfad3d93e0a07d03df627b84b8b6dec63 |
container_end_page | 367 |
container_issue | 5055 |
container_start_page | 365 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 256 |
creator | Jacobsen, John R. Prudent, James R. Kochersperger, Lynn Yonkovich, Shirlee Schultz, Peter G. |
description | An antibody generated against a neutral phosphonate diester transition-state analog was found to catalyze the aminoacylation of the 3′-hydroxyl group of thymidine with an alanyl ester. A comparison of the apparent second-order rate constant of the antibody-catalyzed reaction [5.4 × 10$^4$ molar$^{-1}$ minute$^{-1}$ (M$^{-1}$ min$^{-1}$)] with that of the uncatalyzed reaction (2.6 × 10$^{-4}$ M$^{-1}$ min$^{-1}$) revealed this to be a remarkably efficient catalyst. Moreover, although the concentration of water (55 M) greatly exceeds that of the secondary alcohol, the antibody selectively catalyzes acyl transfer to thymidine. The antibody exhibits sequential binding, with Michaelis constants of 770 μM and 260 μM for acyl acceptor and donor, respectively, and a dissociation constant of 240 pM for hapten. This antibody-catalyzed reaction provides increased insight into the requirements for efficient aminoacylation catalysts and may represent a first step toward the generation of "aminoacyl transfer RNA synthetases" with novel specificities. |
doi_str_mv | 10.1126/science.256.5055.365 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743320941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A12127142</galeid><jstor_id>2877081</jstor_id><sourcerecordid>A12127142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c782t-dfd2e612ff389f4fccf03cf84c856479cfad3d93e0a07d03df627b84b8b6dec63</originalsourceid><addsrcrecordid>eNqN0l2LEzEUBuBBlLWu_oMVioh6sVPzncxlLWtdKBb8ug1pclJSpsnuZArWX29Ky0qlaMlFQs6TE0LeqrrCaIQxEe-zDRAtjAgXI444H1HBH1UDjBpeNwTRx9UAISpqhSR_Wj3LeYVQqTX0orrAXAikyKCS4zi88T7sevXDcezDIrltPTG9abe_wA3H6xCTsdvW9CHF4Rcwdrd4Xj3xps3w4jBfVt8_3nybfKpn8-ntZDyrrVSkr513BAQm3lPVeOat9Yhar5hVXDDZWG8cdQ0FZJB0iDoviFwotlAL4cAKelm93fe969L9BnKv1yFbaFsTIW2yloxSghqGi3zzb0kaJDBn_4VYEEypUAW--guu0qaL5bm6CE4lE6ig6z1amhZ0iD71nbFLiNCZNkXwoWyPMcFEYkYKr0_wMhysgz3l3x35Qnr42S_NJmd9-_Xz2XT-42z6YXouVdPZEb0-RW1qW1iCLrmYzI8423PbpZw78PquC2vTbTVGepdwfUi4LgnXu4TrkvBy7OXhVzaLNbg_h_aRLvXXh7rJ1rS-M9GG_MB4uZwzWdjVnq1yn7qHMlFSIoXpb2PPCCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213537460</pqid></control><display><type>article</type><title>An Efficient Antibody-Catalyzed Aminoacylation Reaction</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals</source><source>ProQuest Social Science Premium Collection</source><source>Education Collection</source><creator>Jacobsen, John R. ; Prudent, James R. ; Kochersperger, Lynn ; Yonkovich, Shirlee ; Schultz, Peter G.</creator><creatorcontrib>Jacobsen, John R. ; Prudent, James R. ; Kochersperger, Lynn ; Yonkovich, Shirlee ; Schultz, Peter G.</creatorcontrib><description>An antibody generated against a neutral phosphonate diester transition-state analog was found to catalyze the aminoacylation of the 3′-hydroxyl group of thymidine with an alanyl ester. A comparison of the apparent second-order rate constant of the antibody-catalyzed reaction [5.4 × 10$^4$ molar$^{-1}$ minute$^{-1}$ (M$^{-1}$ min$^{-1}$)] with that of the uncatalyzed reaction (2.6 × 10$^{-4}$ M$^{-1}$ min$^{-1}$) revealed this to be a remarkably efficient catalyst. Moreover, although the concentration of water (55 M) greatly exceeds that of the secondary alcohol, the antibody selectively catalyzes acyl transfer to thymidine. The antibody exhibits sequential binding, with Michaelis constants of 770 μM and 260 μM for acyl acceptor and donor, respectively, and a dissociation constant of 240 pM for hapten. This antibody-catalyzed reaction provides increased insight into the requirements for efficient aminoacylation catalysts and may represent a first step toward the generation of "aminoacyl transfer RNA synthetases" with novel specificities.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.256.5055.365</identifier><identifier>PMID: 1566082</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Society for the Advancement of Science</publisher><subject>Acylation ; Alanine - metabolism ; Alcohols ; Amino Acyl-tRNA Synthetases - metabolism ; Aminoacyl-tRNA ; Antibodies ; Antibodies, Monoclonal - metabolism ; Biochemistry ; Biological and medical sciences ; Catalysis ; Catalysts ; Chlorides ; Chromatography, High Pressure Liquid ; Enzymes ; Esterification ; Esters ; Fluorescence ; Fundamental and applied biological sciences. Psychology ; Geometry ; Haptens ; Haptens - immunology ; Hemocyanins - immunology ; Kinetics ; Mechanisms. Catalysis. Electron transfer. Models ; Molecular biophysics ; Organic Chemistry ; Organophosphonates - immunology ; Phosphonic acids ; Physical chemistry in biology ; Ribonucleic acid ; RNA ; Serum Albumin, Bovine - immunology ; Thymidine - metabolism ; Transfer RNA ; Viral antibodies ; Water</subject><ispartof>Science (American Association for the Advancement of Science), 1992-04, Vol.256 (5055), p.365-367</ispartof><rights>Copyright 1992 American Association for the Advancement of Science</rights><rights>1992 INIST-CNRS</rights><rights>COPYRIGHT 1992 American Association for the Advancement of Science</rights><rights>COPYRIGHT 1992 American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Apr 17, 1992</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c782t-dfd2e612ff389f4fccf03cf84c856479cfad3d93e0a07d03df627b84b8b6dec63</citedby><cites>FETCH-LOGICAL-c782t-dfd2e612ff389f4fccf03cf84c856479cfad3d93e0a07d03df627b84b8b6dec63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/213537460/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/213537460?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,2884,2885,21378,21394,27924,27925,33611,33612,33877,33878,43733,43880,58238,58471,74221,74397</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5271547$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1566082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacobsen, John R.</creatorcontrib><creatorcontrib>Prudent, James R.</creatorcontrib><creatorcontrib>Kochersperger, Lynn</creatorcontrib><creatorcontrib>Yonkovich, Shirlee</creatorcontrib><creatorcontrib>Schultz, Peter G.</creatorcontrib><title>An Efficient Antibody-Catalyzed Aminoacylation Reaction</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>An antibody generated against a neutral phosphonate diester transition-state analog was found to catalyze the aminoacylation of the 3′-hydroxyl group of thymidine with an alanyl ester. A comparison of the apparent second-order rate constant of the antibody-catalyzed reaction [5.4 × 10$^4$ molar$^{-1}$ minute$^{-1}$ (M$^{-1}$ min$^{-1}$)] with that of the uncatalyzed reaction (2.6 × 10$^{-4}$ M$^{-1}$ min$^{-1}$) revealed this to be a remarkably efficient catalyst. Moreover, although the concentration of water (55 M) greatly exceeds that of the secondary alcohol, the antibody selectively catalyzes acyl transfer to thymidine. The antibody exhibits sequential binding, with Michaelis constants of 770 μM and 260 μM for acyl acceptor and donor, respectively, and a dissociation constant of 240 pM for hapten. This antibody-catalyzed reaction provides increased insight into the requirements for efficient aminoacylation catalysts and may represent a first step toward the generation of "aminoacyl transfer RNA synthetases" with novel specificities.</description><subject>Acylation</subject><subject>Alanine - metabolism</subject><subject>Alcohols</subject><subject>Amino Acyl-tRNA Synthetases - metabolism</subject><subject>Aminoacyl-tRNA</subject><subject>Antibodies</subject><subject>Antibodies, Monoclonal - metabolism</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chlorides</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Enzymes</subject><subject>Esterification</subject><subject>Esters</subject><subject>Fluorescence</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Geometry</subject><subject>Haptens</subject><subject>Haptens - immunology</subject><subject>Hemocyanins - immunology</subject><subject>Kinetics</subject><subject>Mechanisms. Catalysis. Electron transfer. Models</subject><subject>Molecular biophysics</subject><subject>Organic Chemistry</subject><subject>Organophosphonates - immunology</subject><subject>Phosphonic acids</subject><subject>Physical chemistry in biology</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Serum Albumin, Bovine - immunology</subject><subject>Thymidine - metabolism</subject><subject>Transfer RNA</subject><subject>Viral antibodies</subject><subject>Water</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>CJNVE</sourceid><sourceid>M0P</sourceid><recordid>eNqN0l2LEzEUBuBBlLWu_oMVioh6sVPzncxlLWtdKBb8ug1pclJSpsnuZArWX29Ky0qlaMlFQs6TE0LeqrrCaIQxEe-zDRAtjAgXI444H1HBH1UDjBpeNwTRx9UAISpqhSR_Wj3LeYVQqTX0orrAXAikyKCS4zi88T7sevXDcezDIrltPTG9abe_wA3H6xCTsdvW9CHF4Rcwdrd4Xj3xps3w4jBfVt8_3nybfKpn8-ntZDyrrVSkr513BAQm3lPVeOat9Yhar5hVXDDZWG8cdQ0FZJB0iDoviFwotlAL4cAKelm93fe969L9BnKv1yFbaFsTIW2yloxSghqGi3zzb0kaJDBn_4VYEEypUAW--guu0qaL5bm6CE4lE6ig6z1amhZ0iD71nbFLiNCZNkXwoWyPMcFEYkYKr0_wMhysgz3l3x35Qnr42S_NJmd9-_Xz2XT-42z6YXouVdPZEb0-RW1qW1iCLrmYzI8423PbpZw78PquC2vTbTVGepdwfUi4LgnXu4TrkvBy7OXhVzaLNbg_h_aRLvXXh7rJ1rS-M9GG_MB4uZwzWdjVnq1yn7qHMlFSIoXpb2PPCCQ</recordid><startdate>19920417</startdate><enddate>19920417</enddate><creator>Jacobsen, John R.</creator><creator>Prudent, James R.</creator><creator>Kochersperger, Lynn</creator><creator>Yonkovich, Shirlee</creator><creator>Schultz, Peter G.</creator><general>American Society for the Advancement of Science</general><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>0-V</scope><scope>3V.</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88B</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9-</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M0P</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>7T5</scope><scope>7X8</scope></search><sort><creationdate>19920417</creationdate><title>An Efficient Antibody-Catalyzed Aminoacylation Reaction</title><author>Jacobsen, John R. ; Prudent, James R. ; Kochersperger, Lynn ; Yonkovich, Shirlee ; Schultz, Peter G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c782t-dfd2e612ff389f4fccf03cf84c856479cfad3d93e0a07d03df627b84b8b6dec63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Acylation</topic><topic>Alanine - metabolism</topic><topic>Alcohols</topic><topic>Amino Acyl-tRNA Synthetases - metabolism</topic><topic>Aminoacyl-tRNA</topic><topic>Antibodies</topic><topic>Antibodies, Monoclonal - metabolism</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chlorides</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Enzymes</topic><topic>Esterification</topic><topic>Esters</topic><topic>Fluorescence</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Geometry</topic><topic>Haptens</topic><topic>Haptens - immunology</topic><topic>Hemocyanins - immunology</topic><topic>Kinetics</topic><topic>Mechanisms. Catalysis. Electron transfer. Models</topic><topic>Molecular biophysics</topic><topic>Organic Chemistry</topic><topic>Organophosphonates - immunology</topic><topic>Phosphonic acids</topic><topic>Physical chemistry in biology</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Serum Albumin, Bovine - immunology</topic><topic>Thymidine - metabolism</topic><topic>Transfer RNA</topic><topic>Viral antibodies</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacobsen, John R.</creatorcontrib><creatorcontrib>Prudent, James R.</creatorcontrib><creatorcontrib>Kochersperger, Lynn</creatorcontrib><creatorcontrib>Yonkovich, Shirlee</creatorcontrib><creatorcontrib>Schultz, Peter G.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agriculture Science Database</collection><collection>Education Database</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest_Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>Immunology Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacobsen, John R.</au><au>Prudent, James R.</au><au>Kochersperger, Lynn</au><au>Yonkovich, Shirlee</au><au>Schultz, Peter G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Antibody-Catalyzed Aminoacylation Reaction</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1992-04-17</date><risdate>1992</risdate><volume>256</volume><issue>5055</issue><spage>365</spage><epage>367</epage><pages>365-367</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>An antibody generated against a neutral phosphonate diester transition-state analog was found to catalyze the aminoacylation of the 3′-hydroxyl group of thymidine with an alanyl ester. A comparison of the apparent second-order rate constant of the antibody-catalyzed reaction [5.4 × 10$^4$ molar$^{-1}$ minute$^{-1}$ (M$^{-1}$ min$^{-1}$)] with that of the uncatalyzed reaction (2.6 × 10$^{-4}$ M$^{-1}$ min$^{-1}$) revealed this to be a remarkably efficient catalyst. Moreover, although the concentration of water (55 M) greatly exceeds that of the secondary alcohol, the antibody selectively catalyzes acyl transfer to thymidine. The antibody exhibits sequential binding, with Michaelis constants of 770 μM and 260 μM for acyl acceptor and donor, respectively, and a dissociation constant of 240 pM for hapten. This antibody-catalyzed reaction provides increased insight into the requirements for efficient aminoacylation catalysts and may represent a first step toward the generation of "aminoacyl transfer RNA synthetases" with novel specificities.</abstract><cop>Washington, DC</cop><pub>American Society for the Advancement of Science</pub><pmid>1566082</pmid><doi>10.1126/science.256.5055.365</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 1992-04, Vol.256 (5055), p.365-367 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_743320941 |
source | American Association for the Advancement of Science; JSTOR Archival Journals; ProQuest Social Science Premium Collection; Education Collection |
subjects | Acylation Alanine - metabolism Alcohols Amino Acyl-tRNA Synthetases - metabolism Aminoacyl-tRNA Antibodies Antibodies, Monoclonal - metabolism Biochemistry Biological and medical sciences Catalysis Catalysts Chlorides Chromatography, High Pressure Liquid Enzymes Esterification Esters Fluorescence Fundamental and applied biological sciences. Psychology Geometry Haptens Haptens - immunology Hemocyanins - immunology Kinetics Mechanisms. Catalysis. Electron transfer. Models Molecular biophysics Organic Chemistry Organophosphonates - immunology Phosphonic acids Physical chemistry in biology Ribonucleic acid RNA Serum Albumin, Bovine - immunology Thymidine - metabolism Transfer RNA Viral antibodies Water |
title | An Efficient Antibody-Catalyzed Aminoacylation Reaction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A52%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Antibody-Catalyzed%20Aminoacylation%20Reaction&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Jacobsen,%20John%20R.&rft.date=1992-04-17&rft.volume=256&rft.issue=5055&rft.spage=365&rft.epage=367&rft.pages=365-367&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.256.5055.365&rft_dat=%3Cgale_proqu%3EA12127142%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c782t-dfd2e612ff389f4fccf03cf84c856479cfad3d93e0a07d03df627b84b8b6dec63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213537460&rft_id=info:pmid/1566082&rft_galeid=A12127142&rft_jstor_id=2877081&rfr_iscdi=true |