Loading…

Uniform Binding of Aminoacyl-tRNAs to Elongation Factor Tu by Thermodynamic Compensation

Elongation factor Tu (EF-Tu) binds all elongator aminoacyl-transfer RNAs (aa-tRNAs) for delivery to the ribosome during protein synthesis. Here, we show that EF-Tu binds misacylated tRNAs over a much wider range of affinities than it binds the corresponding correctly acylated tRNAs, suggesting that...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2001-10, Vol.294 (5540), p.165-168
Main Authors: LaRiviere, Frederick J., Wolfson, Alexey D., Uhlenbeck, Olke C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Elongation factor Tu (EF-Tu) binds all elongator aminoacyl-transfer RNAs (aa-tRNAs) for delivery to the ribosome during protein synthesis. Here, we show that EF-Tu binds misacylated tRNAs over a much wider range of affinities than it binds the corresponding correctly acylated tRNAs, suggesting that the protein exhibits considerable specificity for both the amino acid side chain and the tRNA body. The thermodynamic contributions of the amino acid and the tRNA body to the overall binding affinity are independent of each other and compensate for one another when the tRNAs are correctly acylated. Because certain misacylated tRNAs bind EF-Tu significantly more strongly or weakly than cognate aa-tRNAs, EF-Tu may contribute to translational accuracy.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1064242