Loading…
An Artificial Neural Network Approach to Predict the Relationship between the Processing Parameters and Properties of TC21 Titanium Alloy
This paper develops a three-layer back-propagation artificial neural network model to analyze and predict the correlation between processing parameters and properties of the damage tolerance type titanium alloy TC21. The inputs of the ANN are working temperatures, deformation extent, deformation rat...
Saved in:
Published in: | Key engineering materials 2010-01, Vol.426-427, p.709-713 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper develops a three-layer back-propagation artificial neural network model to analyze and predict the correlation between processing parameters and properties of the damage tolerance type titanium alloy TC21. The inputs of the ANN are working temperatures, deformation extent, deformation rate and heat treatment conditions. And the outputs are mechanical properties namely ultimate strength, yield strength, elongation, reduction of area, plane strain fracture toughness and microstructure concerned parameters such as β phase fraction, βphase grain size, substructure length and thickness. The ANN is trained with experimental data and achieves a very good performance, which has already been applied to the optimization of processing for forging of aero-parts. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.426-427.709 |