Loading…

An SCF Solvation Model for the Hydrophobic Effect and Absolute Free Energies of Aqueous Solvation

A model for absolute free energies of solvation of organic, small inorganic, and biological molecules in aqueous solution is described. This model has the following features: (i) the solute charge distribution is described by distributed monopoles, and solute screening of dielectric polarization is...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 1992-04, Vol.256 (5054), p.213-217
Main Authors: Cramer, Christopher J., Truhlar, Donald G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A model for absolute free energies of solvation of organic, small inorganic, and biological molecules in aqueous solution is described. This model has the following features: (i) the solute charge distribution is described by distributed monopoles, and solute screening of dielectric polarization is treated with no restrictions on solute shape; (ii) the energetic effects of cavity formation, dispersion interactions, and solute-induced restructuring of water are included by a semiempirical cavity surface tension; and (iii) both of these effects are included in the solute Hamiltonian operator for self-consistent field (SCF) calculations to allow solvent-induced electronic and geometric distortion of the solute. The model is parameterized for solutes composed of H, C, N, O, F, P, S, Cl, Br, and I against experimental data for 150 neutral solutes and 28 ions, with mean absolute errors of 0.7 and 2.6 kilocalories per mole, respectively.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.256.5054.213