Loading…
Nitrogen impurity states in polycrystalline ZnO. A combined EPR and theoretical study
Continuous wave (CW) and pulse electron paramagnetic resonance (EPR) experiments, in conjunction with density functional theory (DFT) calculations, provide a detailed description of defective centres produced upon nitrogen doping of polycrystalline ZnO. Two distinct paramagnetic species are formed u...
Saved in:
Published in: | Journal of materials chemistry 2010-01, Vol.20 (4), p.689-697 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Continuous wave (CW) and pulse electron paramagnetic resonance (EPR) experiments, in conjunction with density functional theory (DFT) calculations, provide a detailed description of defective centres produced upon nitrogen doping of polycrystalline ZnO. Two distinct paramagnetic species are formed upon annealing of ZnO nanoparticles in an NH(3) atmosphere, which are characterized by the interaction of the unpaired electron with one and two N nuclei. HYSCORE experiments provide the full hyperfine and quadrupole interaction tensors for the monomeric defect, which, on the basis of quantum chemical calculations, is assigned to a nitrogen ion substituting a lattice oxygen ion. |
---|---|
ISSN: | 0959-9428 1364-5501 |
DOI: | 10.1039/B915578C |