Loading…

Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites

Information in neurons flows from synapses, through the dendrites and cell body (soma), and, finally, along the axon as spikes of electrical activity that will ultimately release neurotransmitters from the nerve terminals. However, the dendrites of many neurons also have a secretory role, transmitti...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2002-07, Vol.418 (6893), p.85-89
Main Authors: Ludwig, Mike, Sabatier, Nancy, Bull, Philip M, Landgraf, Rainer, Dayanithi, Govindan, Leng, Gareth
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c550t-b995ceffcc5336d423488a6212671242fcfe0f519f146ca6762ee12e4cb4d00f3
cites cdi_FETCH-LOGICAL-c550t-b995ceffcc5336d423488a6212671242fcfe0f519f146ca6762ee12e4cb4d00f3
container_end_page 89
container_issue 6893
container_start_page 85
container_title Nature (London)
container_volume 418
creator Ludwig, Mike
Sabatier, Nancy
Bull, Philip M
Landgraf, Rainer
Dayanithi, Govindan
Leng, Gareth
description Information in neurons flows from synapses, through the dendrites and cell body (soma), and, finally, along the axon as spikes of electrical activity that will ultimately release neurotransmitters from the nerve terminals. However, the dendrites of many neurons also have a secretory role, transmitting information back to afferent nerve terminals. In some central nervous system neurons, spikes that originate at the soma can travel along dendrites as well as axons, and may thus elicit secretion from both compartments. Here, we show that in hypothalamic oxytocin neurons, agents that mobilize intracellular Ca(2+) induce oxytocin release from dendrites without increasing the electrical activity of the cell body, and without inducing secretion from the nerve terminals. Conversely, electrical activity in the cell bodies can cause the secretion of oxytocin from nerve terminals with little or no release from the dendrites. Finally, mobilization of intracellular Ca(2+) can also prime the releasable pool of oxytocin in the dendrites. This priming action makes dendritic oxytocin available for release in response to subsequent spike activity. Priming persists for a prolonged period, changing the nature of interactions between oxytocin neurons and their neighbours.
doi_str_mv 10.1038/nature00822
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743349273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A187545977</galeid><sourcerecordid>A187545977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-b995ceffcc5336d423488a6212671242fcfe0f519f146ca6762ee12e4cb4d00f3</originalsourceid><addsrcrecordid>eNqF0ttrFDEUB-Agil2rT77L4IMiMjW3yeWxFC8LBcHLmxCymZMlZSYzTTLF_vdm2YV2pSh5CJx8-cE5HIReEnxGMFMfoi1LAowVpY_QinApWi6UfIxWGFPVYsXECXqW8xXGuCOSP0UnhGItNSEr9GsdS7IOhmEZbGqcHVxYxiaXKUFuEmxruUBjXQk3ody2PcwQe4ilibCkaYa5hB4qHMBmaHyaxqY-9ykUyM_RE2-HDC8O9yn6-enjj4sv7eXXz-uL88vWdR0u7UbrzoH3znWMiZ5TxpWyghIqJKGceucB-45oT7hwVkhBAQgF7ja8x9izU_R2nzun6XqBXMwY8q4nG2FaspGcMa6pZFW--bckSgmu-H8hUZx2Wu0SX_8Fr6YlxdquoZhzzRSWFbV7tLUDmBD9tBv6FiIkO0wRfKjlc6Jkxzst5V3okXdzuDb30dkDqJ4exuAeTH139KGaAr_L1i45m_X3b8f2_d66NOWcwJs5hdGmW0Ow2a2dubd2Vb86DGHZjNDf2cOesT_209Hj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204493807</pqid></control><display><type>article</type><title>Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites</title><source>Nature</source><creator>Ludwig, Mike ; Sabatier, Nancy ; Bull, Philip M ; Landgraf, Rainer ; Dayanithi, Govindan ; Leng, Gareth</creator><creatorcontrib>Ludwig, Mike ; Sabatier, Nancy ; Bull, Philip M ; Landgraf, Rainer ; Dayanithi, Govindan ; Leng, Gareth</creatorcontrib><description>Information in neurons flows from synapses, through the dendrites and cell body (soma), and, finally, along the axon as spikes of electrical activity that will ultimately release neurotransmitters from the nerve terminals. However, the dendrites of many neurons also have a secretory role, transmitting information back to afferent nerve terminals. In some central nervous system neurons, spikes that originate at the soma can travel along dendrites as well as axons, and may thus elicit secretion from both compartments. Here, we show that in hypothalamic oxytocin neurons, agents that mobilize intracellular Ca(2+) induce oxytocin release from dendrites without increasing the electrical activity of the cell body, and without inducing secretion from the nerve terminals. Conversely, electrical activity in the cell bodies can cause the secretion of oxytocin from nerve terminals with little or no release from the dendrites. Finally, mobilization of intracellular Ca(2+) can also prime the releasable pool of oxytocin in the dendrites. This priming action makes dendritic oxytocin available for release in response to subsequent spike activity. Priming persists for a prolonged period, changing the nature of interactions between oxytocin neurons and their neighbours.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature00822</identifier><identifier>PMID: 12097911</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><subject>Animals ; Calcium ; Calcium - metabolism ; Calcium Signaling - drug effects ; Central nervous system ; Dendrites ; Dendrites - drug effects ; Dendrites - metabolism ; Dendrites - secretion ; Electrophysiology ; Female ; Microdialysis ; Neurology ; Neurons ; Neuropeptides - secretion ; Oxytocin - secretion ; Peptides ; Rats ; Supraoptic Nucleus - cytology ; Supraoptic Nucleus - drug effects ; Supraoptic Nucleus - metabolism ; Supraoptic Nucleus - secretion ; Synapses - drug effects ; Synapses - metabolism ; Synapses - secretion ; Thapsigargin - pharmacology</subject><ispartof>Nature (London), 2002-07, Vol.418 (6893), p.85-89</ispartof><rights>COPYRIGHT 2002 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Jul 4, 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-b995ceffcc5336d423488a6212671242fcfe0f519f146ca6762ee12e4cb4d00f3</citedby><cites>FETCH-LOGICAL-c550t-b995ceffcc5336d423488a6212671242fcfe0f519f146ca6762ee12e4cb4d00f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12097911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ludwig, Mike</creatorcontrib><creatorcontrib>Sabatier, Nancy</creatorcontrib><creatorcontrib>Bull, Philip M</creatorcontrib><creatorcontrib>Landgraf, Rainer</creatorcontrib><creatorcontrib>Dayanithi, Govindan</creatorcontrib><creatorcontrib>Leng, Gareth</creatorcontrib><title>Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>Information in neurons flows from synapses, through the dendrites and cell body (soma), and, finally, along the axon as spikes of electrical activity that will ultimately release neurotransmitters from the nerve terminals. However, the dendrites of many neurons also have a secretory role, transmitting information back to afferent nerve terminals. In some central nervous system neurons, spikes that originate at the soma can travel along dendrites as well as axons, and may thus elicit secretion from both compartments. Here, we show that in hypothalamic oxytocin neurons, agents that mobilize intracellular Ca(2+) induce oxytocin release from dendrites without increasing the electrical activity of the cell body, and without inducing secretion from the nerve terminals. Conversely, electrical activity in the cell bodies can cause the secretion of oxytocin from nerve terminals with little or no release from the dendrites. Finally, mobilization of intracellular Ca(2+) can also prime the releasable pool of oxytocin in the dendrites. This priming action makes dendritic oxytocin available for release in response to subsequent spike activity. Priming persists for a prolonged period, changing the nature of interactions between oxytocin neurons and their neighbours.</description><subject>Animals</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium Signaling - drug effects</subject><subject>Central nervous system</subject><subject>Dendrites</subject><subject>Dendrites - drug effects</subject><subject>Dendrites - metabolism</subject><subject>Dendrites - secretion</subject><subject>Electrophysiology</subject><subject>Female</subject><subject>Microdialysis</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neuropeptides - secretion</subject><subject>Oxytocin - secretion</subject><subject>Peptides</subject><subject>Rats</subject><subject>Supraoptic Nucleus - cytology</subject><subject>Supraoptic Nucleus - drug effects</subject><subject>Supraoptic Nucleus - metabolism</subject><subject>Supraoptic Nucleus - secretion</subject><subject>Synapses - drug effects</subject><subject>Synapses - metabolism</subject><subject>Synapses - secretion</subject><subject>Thapsigargin - pharmacology</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqF0ttrFDEUB-Agil2rT77L4IMiMjW3yeWxFC8LBcHLmxCymZMlZSYzTTLF_vdm2YV2pSh5CJx8-cE5HIReEnxGMFMfoi1LAowVpY_QinApWi6UfIxWGFPVYsXECXqW8xXGuCOSP0UnhGItNSEr9GsdS7IOhmEZbGqcHVxYxiaXKUFuEmxruUBjXQk3ody2PcwQe4ilibCkaYa5hB4qHMBmaHyaxqY-9ykUyM_RE2-HDC8O9yn6-enjj4sv7eXXz-uL88vWdR0u7UbrzoH3znWMiZ5TxpWyghIqJKGceucB-45oT7hwVkhBAQgF7ja8x9izU_R2nzun6XqBXMwY8q4nG2FaspGcMa6pZFW--bckSgmu-H8hUZx2Wu0SX_8Fr6YlxdquoZhzzRSWFbV7tLUDmBD9tBv6FiIkO0wRfKjlc6Jkxzst5V3okXdzuDb30dkDqJ4exuAeTH139KGaAr_L1i45m_X3b8f2_d66NOWcwJs5hdGmW0Ow2a2dubd2Vb86DGHZjNDf2cOesT_209Hj</recordid><startdate>20020704</startdate><enddate>20020704</enddate><creator>Ludwig, Mike</creator><creator>Sabatier, Nancy</creator><creator>Bull, Philip M</creator><creator>Landgraf, Rainer</creator><creator>Dayanithi, Govindan</creator><creator>Leng, Gareth</creator><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20020704</creationdate><title>Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites</title><author>Ludwig, Mike ; Sabatier, Nancy ; Bull, Philip M ; Landgraf, Rainer ; Dayanithi, Govindan ; Leng, Gareth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-b995ceffcc5336d423488a6212671242fcfe0f519f146ca6762ee12e4cb4d00f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium Signaling - drug effects</topic><topic>Central nervous system</topic><topic>Dendrites</topic><topic>Dendrites - drug effects</topic><topic>Dendrites - metabolism</topic><topic>Dendrites - secretion</topic><topic>Electrophysiology</topic><topic>Female</topic><topic>Microdialysis</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neuropeptides - secretion</topic><topic>Oxytocin - secretion</topic><topic>Peptides</topic><topic>Rats</topic><topic>Supraoptic Nucleus - cytology</topic><topic>Supraoptic Nucleus - drug effects</topic><topic>Supraoptic Nucleus - metabolism</topic><topic>Supraoptic Nucleus - secretion</topic><topic>Synapses - drug effects</topic><topic>Synapses - metabolism</topic><topic>Synapses - secretion</topic><topic>Thapsigargin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ludwig, Mike</creatorcontrib><creatorcontrib>Sabatier, Nancy</creatorcontrib><creatorcontrib>Bull, Philip M</creatorcontrib><creatorcontrib>Landgraf, Rainer</creatorcontrib><creatorcontrib>Dayanithi, Govindan</creatorcontrib><creatorcontrib>Leng, Gareth</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ludwig, Mike</au><au>Sabatier, Nancy</au><au>Bull, Philip M</au><au>Landgraf, Rainer</au><au>Dayanithi, Govindan</au><au>Leng, Gareth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites</atitle><jtitle>Nature (London)</jtitle><addtitle>Nature</addtitle><date>2002-07-04</date><risdate>2002</risdate><volume>418</volume><issue>6893</issue><spage>85</spage><epage>89</epage><pages>85-89</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Information in neurons flows from synapses, through the dendrites and cell body (soma), and, finally, along the axon as spikes of electrical activity that will ultimately release neurotransmitters from the nerve terminals. However, the dendrites of many neurons also have a secretory role, transmitting information back to afferent nerve terminals. In some central nervous system neurons, spikes that originate at the soma can travel along dendrites as well as axons, and may thus elicit secretion from both compartments. Here, we show that in hypothalamic oxytocin neurons, agents that mobilize intracellular Ca(2+) induce oxytocin release from dendrites without increasing the electrical activity of the cell body, and without inducing secretion from the nerve terminals. Conversely, electrical activity in the cell bodies can cause the secretion of oxytocin from nerve terminals with little or no release from the dendrites. Finally, mobilization of intracellular Ca(2+) can also prime the releasable pool of oxytocin in the dendrites. This priming action makes dendritic oxytocin available for release in response to subsequent spike activity. Priming persists for a prolonged period, changing the nature of interactions between oxytocin neurons and their neighbours.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>12097911</pmid><doi>10.1038/nature00822</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2002-07, Vol.418 (6893), p.85-89
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_743349273
source Nature
subjects Animals
Calcium
Calcium - metabolism
Calcium Signaling - drug effects
Central nervous system
Dendrites
Dendrites - drug effects
Dendrites - metabolism
Dendrites - secretion
Electrophysiology
Female
Microdialysis
Neurology
Neurons
Neuropeptides - secretion
Oxytocin - secretion
Peptides
Rats
Supraoptic Nucleus - cytology
Supraoptic Nucleus - drug effects
Supraoptic Nucleus - metabolism
Supraoptic Nucleus - secretion
Synapses - drug effects
Synapses - metabolism
Synapses - secretion
Thapsigargin - pharmacology
title Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracellular%20calcium%20stores%20regulate%20activity-dependent%20neuropeptide%20release%20from%20dendrites&rft.jtitle=Nature%20(London)&rft.au=Ludwig,%20Mike&rft.date=2002-07-04&rft.volume=418&rft.issue=6893&rft.spage=85&rft.epage=89&rft.pages=85-89&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature00822&rft_dat=%3Cgale_proqu%3EA187545977%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c550t-b995ceffcc5336d423488a6212671242fcfe0f519f146ca6762ee12e4cb4d00f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204493807&rft_id=info:pmid/12097911&rft_galeid=A187545977&rfr_iscdi=true