Loading…
Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites
Information in neurons flows from synapses, through the dendrites and cell body (soma), and, finally, along the axon as spikes of electrical activity that will ultimately release neurotransmitters from the nerve terminals. However, the dendrites of many neurons also have a secretory role, transmitti...
Saved in:
Published in: | Nature (London) 2002-07, Vol.418 (6893), p.85-89 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c550t-b995ceffcc5336d423488a6212671242fcfe0f519f146ca6762ee12e4cb4d00f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c550t-b995ceffcc5336d423488a6212671242fcfe0f519f146ca6762ee12e4cb4d00f3 |
container_end_page | 89 |
container_issue | 6893 |
container_start_page | 85 |
container_title | Nature (London) |
container_volume | 418 |
creator | Ludwig, Mike Sabatier, Nancy Bull, Philip M Landgraf, Rainer Dayanithi, Govindan Leng, Gareth |
description | Information in neurons flows from synapses, through the dendrites and cell body (soma), and, finally, along the axon as spikes of electrical activity that will ultimately release neurotransmitters from the nerve terminals. However, the dendrites of many neurons also have a secretory role, transmitting information back to afferent nerve terminals. In some central nervous system neurons, spikes that originate at the soma can travel along dendrites as well as axons, and may thus elicit secretion from both compartments. Here, we show that in hypothalamic oxytocin neurons, agents that mobilize intracellular Ca(2+) induce oxytocin release from dendrites without increasing the electrical activity of the cell body, and without inducing secretion from the nerve terminals. Conversely, electrical activity in the cell bodies can cause the secretion of oxytocin from nerve terminals with little or no release from the dendrites. Finally, mobilization of intracellular Ca(2+) can also prime the releasable pool of oxytocin in the dendrites. This priming action makes dendritic oxytocin available for release in response to subsequent spike activity. Priming persists for a prolonged period, changing the nature of interactions between oxytocin neurons and their neighbours. |
doi_str_mv | 10.1038/nature00822 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743349273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A187545977</galeid><sourcerecordid>A187545977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-b995ceffcc5336d423488a6212671242fcfe0f519f146ca6762ee12e4cb4d00f3</originalsourceid><addsrcrecordid>eNqF0ttrFDEUB-Agil2rT77L4IMiMjW3yeWxFC8LBcHLmxCymZMlZSYzTTLF_vdm2YV2pSh5CJx8-cE5HIReEnxGMFMfoi1LAowVpY_QinApWi6UfIxWGFPVYsXECXqW8xXGuCOSP0UnhGItNSEr9GsdS7IOhmEZbGqcHVxYxiaXKUFuEmxruUBjXQk3ody2PcwQe4ilibCkaYa5hB4qHMBmaHyaxqY-9ykUyM_RE2-HDC8O9yn6-enjj4sv7eXXz-uL88vWdR0u7UbrzoH3znWMiZ5TxpWyghIqJKGceucB-45oT7hwVkhBAQgF7ja8x9izU_R2nzun6XqBXMwY8q4nG2FaspGcMa6pZFW--bckSgmu-H8hUZx2Wu0SX_8Fr6YlxdquoZhzzRSWFbV7tLUDmBD9tBv6FiIkO0wRfKjlc6Jkxzst5V3okXdzuDb30dkDqJ4exuAeTH139KGaAr_L1i45m_X3b8f2_d66NOWcwJs5hdGmW0Ow2a2dubd2Vb86DGHZjNDf2cOesT_209Hj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204493807</pqid></control><display><type>article</type><title>Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites</title><source>Nature</source><creator>Ludwig, Mike ; Sabatier, Nancy ; Bull, Philip M ; Landgraf, Rainer ; Dayanithi, Govindan ; Leng, Gareth</creator><creatorcontrib>Ludwig, Mike ; Sabatier, Nancy ; Bull, Philip M ; Landgraf, Rainer ; Dayanithi, Govindan ; Leng, Gareth</creatorcontrib><description>Information in neurons flows from synapses, through the dendrites and cell body (soma), and, finally, along the axon as spikes of electrical activity that will ultimately release neurotransmitters from the nerve terminals. However, the dendrites of many neurons also have a secretory role, transmitting information back to afferent nerve terminals. In some central nervous system neurons, spikes that originate at the soma can travel along dendrites as well as axons, and may thus elicit secretion from both compartments. Here, we show that in hypothalamic oxytocin neurons, agents that mobilize intracellular Ca(2+) induce oxytocin release from dendrites without increasing the electrical activity of the cell body, and without inducing secretion from the nerve terminals. Conversely, electrical activity in the cell bodies can cause the secretion of oxytocin from nerve terminals with little or no release from the dendrites. Finally, mobilization of intracellular Ca(2+) can also prime the releasable pool of oxytocin in the dendrites. This priming action makes dendritic oxytocin available for release in response to subsequent spike activity. Priming persists for a prolonged period, changing the nature of interactions between oxytocin neurons and their neighbours.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature00822</identifier><identifier>PMID: 12097911</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><subject>Animals ; Calcium ; Calcium - metabolism ; Calcium Signaling - drug effects ; Central nervous system ; Dendrites ; Dendrites - drug effects ; Dendrites - metabolism ; Dendrites - secretion ; Electrophysiology ; Female ; Microdialysis ; Neurology ; Neurons ; Neuropeptides - secretion ; Oxytocin - secretion ; Peptides ; Rats ; Supraoptic Nucleus - cytology ; Supraoptic Nucleus - drug effects ; Supraoptic Nucleus - metabolism ; Supraoptic Nucleus - secretion ; Synapses - drug effects ; Synapses - metabolism ; Synapses - secretion ; Thapsigargin - pharmacology</subject><ispartof>Nature (London), 2002-07, Vol.418 (6893), p.85-89</ispartof><rights>COPYRIGHT 2002 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Jul 4, 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-b995ceffcc5336d423488a6212671242fcfe0f519f146ca6762ee12e4cb4d00f3</citedby><cites>FETCH-LOGICAL-c550t-b995ceffcc5336d423488a6212671242fcfe0f519f146ca6762ee12e4cb4d00f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12097911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ludwig, Mike</creatorcontrib><creatorcontrib>Sabatier, Nancy</creatorcontrib><creatorcontrib>Bull, Philip M</creatorcontrib><creatorcontrib>Landgraf, Rainer</creatorcontrib><creatorcontrib>Dayanithi, Govindan</creatorcontrib><creatorcontrib>Leng, Gareth</creatorcontrib><title>Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>Information in neurons flows from synapses, through the dendrites and cell body (soma), and, finally, along the axon as spikes of electrical activity that will ultimately release neurotransmitters from the nerve terminals. However, the dendrites of many neurons also have a secretory role, transmitting information back to afferent nerve terminals. In some central nervous system neurons, spikes that originate at the soma can travel along dendrites as well as axons, and may thus elicit secretion from both compartments. Here, we show that in hypothalamic oxytocin neurons, agents that mobilize intracellular Ca(2+) induce oxytocin release from dendrites without increasing the electrical activity of the cell body, and without inducing secretion from the nerve terminals. Conversely, electrical activity in the cell bodies can cause the secretion of oxytocin from nerve terminals with little or no release from the dendrites. Finally, mobilization of intracellular Ca(2+) can also prime the releasable pool of oxytocin in the dendrites. This priming action makes dendritic oxytocin available for release in response to subsequent spike activity. Priming persists for a prolonged period, changing the nature of interactions between oxytocin neurons and their neighbours.</description><subject>Animals</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium Signaling - drug effects</subject><subject>Central nervous system</subject><subject>Dendrites</subject><subject>Dendrites - drug effects</subject><subject>Dendrites - metabolism</subject><subject>Dendrites - secretion</subject><subject>Electrophysiology</subject><subject>Female</subject><subject>Microdialysis</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neuropeptides - secretion</subject><subject>Oxytocin - secretion</subject><subject>Peptides</subject><subject>Rats</subject><subject>Supraoptic Nucleus - cytology</subject><subject>Supraoptic Nucleus - drug effects</subject><subject>Supraoptic Nucleus - metabolism</subject><subject>Supraoptic Nucleus - secretion</subject><subject>Synapses - drug effects</subject><subject>Synapses - metabolism</subject><subject>Synapses - secretion</subject><subject>Thapsigargin - pharmacology</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqF0ttrFDEUB-Agil2rT77L4IMiMjW3yeWxFC8LBcHLmxCymZMlZSYzTTLF_vdm2YV2pSh5CJx8-cE5HIReEnxGMFMfoi1LAowVpY_QinApWi6UfIxWGFPVYsXECXqW8xXGuCOSP0UnhGItNSEr9GsdS7IOhmEZbGqcHVxYxiaXKUFuEmxruUBjXQk3ody2PcwQe4ilibCkaYa5hB4qHMBmaHyaxqY-9ykUyM_RE2-HDC8O9yn6-enjj4sv7eXXz-uL88vWdR0u7UbrzoH3znWMiZ5TxpWyghIqJKGceucB-45oT7hwVkhBAQgF7ja8x9izU_R2nzun6XqBXMwY8q4nG2FaspGcMa6pZFW--bckSgmu-H8hUZx2Wu0SX_8Fr6YlxdquoZhzzRSWFbV7tLUDmBD9tBv6FiIkO0wRfKjlc6Jkxzst5V3okXdzuDb30dkDqJ4exuAeTH139KGaAr_L1i45m_X3b8f2_d66NOWcwJs5hdGmW0Ow2a2dubd2Vb86DGHZjNDf2cOesT_209Hj</recordid><startdate>20020704</startdate><enddate>20020704</enddate><creator>Ludwig, Mike</creator><creator>Sabatier, Nancy</creator><creator>Bull, Philip M</creator><creator>Landgraf, Rainer</creator><creator>Dayanithi, Govindan</creator><creator>Leng, Gareth</creator><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20020704</creationdate><title>Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites</title><author>Ludwig, Mike ; Sabatier, Nancy ; Bull, Philip M ; Landgraf, Rainer ; Dayanithi, Govindan ; Leng, Gareth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-b995ceffcc5336d423488a6212671242fcfe0f519f146ca6762ee12e4cb4d00f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium Signaling - drug effects</topic><topic>Central nervous system</topic><topic>Dendrites</topic><topic>Dendrites - drug effects</topic><topic>Dendrites - metabolism</topic><topic>Dendrites - secretion</topic><topic>Electrophysiology</topic><topic>Female</topic><topic>Microdialysis</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neuropeptides - secretion</topic><topic>Oxytocin - secretion</topic><topic>Peptides</topic><topic>Rats</topic><topic>Supraoptic Nucleus - cytology</topic><topic>Supraoptic Nucleus - drug effects</topic><topic>Supraoptic Nucleus - metabolism</topic><topic>Supraoptic Nucleus - secretion</topic><topic>Synapses - drug effects</topic><topic>Synapses - metabolism</topic><topic>Synapses - secretion</topic><topic>Thapsigargin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ludwig, Mike</creatorcontrib><creatorcontrib>Sabatier, Nancy</creatorcontrib><creatorcontrib>Bull, Philip M</creatorcontrib><creatorcontrib>Landgraf, Rainer</creatorcontrib><creatorcontrib>Dayanithi, Govindan</creatorcontrib><creatorcontrib>Leng, Gareth</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ludwig, Mike</au><au>Sabatier, Nancy</au><au>Bull, Philip M</au><au>Landgraf, Rainer</au><au>Dayanithi, Govindan</au><au>Leng, Gareth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites</atitle><jtitle>Nature (London)</jtitle><addtitle>Nature</addtitle><date>2002-07-04</date><risdate>2002</risdate><volume>418</volume><issue>6893</issue><spage>85</spage><epage>89</epage><pages>85-89</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Information in neurons flows from synapses, through the dendrites and cell body (soma), and, finally, along the axon as spikes of electrical activity that will ultimately release neurotransmitters from the nerve terminals. However, the dendrites of many neurons also have a secretory role, transmitting information back to afferent nerve terminals. In some central nervous system neurons, spikes that originate at the soma can travel along dendrites as well as axons, and may thus elicit secretion from both compartments. Here, we show that in hypothalamic oxytocin neurons, agents that mobilize intracellular Ca(2+) induce oxytocin release from dendrites without increasing the electrical activity of the cell body, and without inducing secretion from the nerve terminals. Conversely, electrical activity in the cell bodies can cause the secretion of oxytocin from nerve terminals with little or no release from the dendrites. Finally, mobilization of intracellular Ca(2+) can also prime the releasable pool of oxytocin in the dendrites. This priming action makes dendritic oxytocin available for release in response to subsequent spike activity. Priming persists for a prolonged period, changing the nature of interactions between oxytocin neurons and their neighbours.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>12097911</pmid><doi>10.1038/nature00822</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2002-07, Vol.418 (6893), p.85-89 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_743349273 |
source | Nature |
subjects | Animals Calcium Calcium - metabolism Calcium Signaling - drug effects Central nervous system Dendrites Dendrites - drug effects Dendrites - metabolism Dendrites - secretion Electrophysiology Female Microdialysis Neurology Neurons Neuropeptides - secretion Oxytocin - secretion Peptides Rats Supraoptic Nucleus - cytology Supraoptic Nucleus - drug effects Supraoptic Nucleus - metabolism Supraoptic Nucleus - secretion Synapses - drug effects Synapses - metabolism Synapses - secretion Thapsigargin - pharmacology |
title | Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracellular%20calcium%20stores%20regulate%20activity-dependent%20neuropeptide%20release%20from%20dendrites&rft.jtitle=Nature%20(London)&rft.au=Ludwig,%20Mike&rft.date=2002-07-04&rft.volume=418&rft.issue=6893&rft.spage=85&rft.epage=89&rft.pages=85-89&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature00822&rft_dat=%3Cgale_proqu%3EA187545977%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c550t-b995ceffcc5336d423488a6212671242fcfe0f519f146ca6762ee12e4cb4d00f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204493807&rft_id=info:pmid/12097911&rft_galeid=A187545977&rfr_iscdi=true |