Loading…
Polar ocean stratification in a cold climate
The low-latitude ocean is strongly stratified by the warmth of its surface water. As a result, the great volume of the deep ocean has easiest access to the atmosphere through the polar surface ocean. In the modern polar ocean during the winter, the vertical distribution of temperature promotes overt...
Saved in:
Published in: | Nature 2004-03, Vol.428 (6978), p.59-63 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a830t-360a11152cc4f7fddf76f70af0ce10f1b927081b5d688f945104ab34d57fa8aa3 |
---|---|
cites | cdi_FETCH-LOGICAL-a830t-360a11152cc4f7fddf76f70af0ce10f1b927081b5d688f945104ab34d57fa8aa3 |
container_end_page | 63 |
container_issue | 6978 |
container_start_page | 59 |
container_title | Nature |
container_volume | 428 |
creator | Sigman, Daniel M Jaccard, Samuel L Haug, Gerald H |
description | The low-latitude ocean is strongly stratified by the warmth of its surface water. As a result, the great volume of the deep ocean has easiest access to the atmosphere through the polar surface ocean. In the modern polar ocean during the winter, the vertical distribution of temperature promotes overturning, with colder water over warmer, while the salinity distribution typically promotes stratification, with fresher water over saltier. However, the sensitivity of seawater density to temperature is reduced as temperature approaches the freezing point, with potential consequences for global ocean circulation under cold climates. Here we present deep-sea records of biogenic opal accumulation and sedimentary nitrogen isotopic composition from the Subarctic North Pacific Ocean and the Southern Ocean. These records indicate that vertical stratification increased in both northern and southern high latitudes 2.7 million years ago, when Northern Hemisphere glaciation intensified in association with global cooling during the late Pliocene epoch. We propose that the cooling caused this increased stratification by weakening the role of temperature in polar ocean density structure so as to reduce its opposition to the stratifying effect of the vertical salinity distribution. The shift towards stratification in the polar ocean 2.7 million years ago may have increased the quantity of carbon dioxide trapped in the abyss, amplifying the global cooling. |
doi_str_mv | 10.1038/nature02357 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743377626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A186371354</galeid><sourcerecordid>A186371354</sourcerecordid><originalsourceid>FETCH-LOGICAL-a830t-360a11152cc4f7fddf76f70af0ce10f1b927081b5d688f945104ab34d57fa8aa3</originalsourceid><addsrcrecordid>eNqF0t2LEzEQAPAgildPn3yXVVARb8_M5nMfS_Hj4FDREx_DNJuUPbbZXrIL3n9_kRbbSrUEEpj8MgOTIeQp0HOgTL8LOIzR0YoJdY9MgCtZcqnVfTKhtNIl1UyekEcpXVNKBSj-kJwAr-u6UnpCzr72Hcaitw5DkYaIQ-tbm_c-FG0osLB91xS2a5c4uMfkgccuuSeb85T8-PD-avapvPzy8WI2vSxRMzqUTFIEAFFZy73yTeOV9Iqip9YB9TDPpamGuWik1r7mAijHOeONUB41Ijslr9d5V7G_GV0azLJN1nUdBtePySjOmFKyklm--r8EWSsp4SisgGkQSh2FoCkTwOlxyGXNayYyfPEXvO7HGHIDTUW54KxmPKNyjRbYOdMG3-e_sAsXXMSuD863OTwFLZkCJvg26Z63q_bG7KLzAyivxi1bezDrm70H2Qzu17DAMSVz8f3bvn37bzu9-jn7fFDb2KcUnTermGcq3hqg5vcYm50xzvrZpmXjfOmard3MbQYvNwCTxc5HDLZNWyeEFLWusjtbu5SvwsLFbe8P132-5uvgn3y75g6IEg7b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204543934</pqid></control><display><type>article</type><title>Polar ocean stratification in a cold climate</title><source>Nature</source><creator>Sigman, Daniel M ; Jaccard, Samuel L ; Haug, Gerald H</creator><creatorcontrib>Sigman, Daniel M ; Jaccard, Samuel L ; Haug, Gerald H</creatorcontrib><description>The low-latitude ocean is strongly stratified by the warmth of its surface water. As a result, the great volume of the deep ocean has easiest access to the atmosphere through the polar surface ocean. In the modern polar ocean during the winter, the vertical distribution of temperature promotes overturning, with colder water over warmer, while the salinity distribution typically promotes stratification, with fresher water over saltier. However, the sensitivity of seawater density to temperature is reduced as temperature approaches the freezing point, with potential consequences for global ocean circulation under cold climates. Here we present deep-sea records of biogenic opal accumulation and sedimentary nitrogen isotopic composition from the Subarctic North Pacific Ocean and the Southern Ocean. These records indicate that vertical stratification increased in both northern and southern high latitudes 2.7 million years ago, when Northern Hemisphere glaciation intensified in association with global cooling during the late Pliocene epoch. We propose that the cooling caused this increased stratification by weakening the role of temperature in polar ocean density structure so as to reduce its opposition to the stratifying effect of the vertical salinity distribution. The shift towards stratification in the polar ocean 2.7 million years ago may have increased the quantity of carbon dioxide trapped in the abyss, amplifying the global cooling.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature02357</identifier><identifier>PMID: 14999278</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Atmosphere - chemistry ; Carbon dioxide ; Carbon Dioxide - analysis ; Climate ; Cold ; Cold Climate ; Cooling ; Deep sea ; Diatoms - physiology ; Earth sciences ; Earth, ocean, space ; Eukaryota - physiology ; Exact sciences and technology ; Freezing ; Freezing point ; Geologic Sediments - chemistry ; Glaciation ; Humanities and Social Sciences ; Ice ; Latitude ; letter ; Marine ; Marine and continental quaternary ; multidisciplinary ; Nitrogen - analysis ; Ocean circulation ; Oceans ; Oceans and Seas ; Pacific Ocean ; Phytoplankton - physiology ; Pliocene ; Salinity ; Science ; Science (multidisciplinary) ; Seasons ; Seawater ; Seawater - chemistry ; Sodium Chloride - analysis ; Stratification ; Surface water ; Surficial geology ; Temperature ; Temperature distribution ; Time Factors ; Vertical distribution ; Water circulation ; Water Movements</subject><ispartof>Nature, 2004-03, Vol.428 (6978), p.59-63</ispartof><rights>Macmillan Magazines Ltd. 2004</rights><rights>2004 INIST-CNRS</rights><rights>COPYRIGHT 2004 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Mar 4, 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a830t-360a11152cc4f7fddf76f70af0ce10f1b927081b5d688f945104ab34d57fa8aa3</citedby><cites>FETCH-LOGICAL-a830t-360a11152cc4f7fddf76f70af0ce10f1b927081b5d688f945104ab34d57fa8aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2725,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15565982$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14999278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sigman, Daniel M</creatorcontrib><creatorcontrib>Jaccard, Samuel L</creatorcontrib><creatorcontrib>Haug, Gerald H</creatorcontrib><title>Polar ocean stratification in a cold climate</title><title>Nature</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The low-latitude ocean is strongly stratified by the warmth of its surface water. As a result, the great volume of the deep ocean has easiest access to the atmosphere through the polar surface ocean. In the modern polar ocean during the winter, the vertical distribution of temperature promotes overturning, with colder water over warmer, while the salinity distribution typically promotes stratification, with fresher water over saltier. However, the sensitivity of seawater density to temperature is reduced as temperature approaches the freezing point, with potential consequences for global ocean circulation under cold climates. Here we present deep-sea records of biogenic opal accumulation and sedimentary nitrogen isotopic composition from the Subarctic North Pacific Ocean and the Southern Ocean. These records indicate that vertical stratification increased in both northern and southern high latitudes 2.7 million years ago, when Northern Hemisphere glaciation intensified in association with global cooling during the late Pliocene epoch. We propose that the cooling caused this increased stratification by weakening the role of temperature in polar ocean density structure so as to reduce its opposition to the stratifying effect of the vertical salinity distribution. The shift towards stratification in the polar ocean 2.7 million years ago may have increased the quantity of carbon dioxide trapped in the abyss, amplifying the global cooling.</description><subject>Animals</subject><subject>Atmosphere - chemistry</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - analysis</subject><subject>Climate</subject><subject>Cold</subject><subject>Cold Climate</subject><subject>Cooling</subject><subject>Deep sea</subject><subject>Diatoms - physiology</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Eukaryota - physiology</subject><subject>Exact sciences and technology</subject><subject>Freezing</subject><subject>Freezing point</subject><subject>Geologic Sediments - chemistry</subject><subject>Glaciation</subject><subject>Humanities and Social Sciences</subject><subject>Ice</subject><subject>Latitude</subject><subject>letter</subject><subject>Marine</subject><subject>Marine and continental quaternary</subject><subject>multidisciplinary</subject><subject>Nitrogen - analysis</subject><subject>Ocean circulation</subject><subject>Oceans</subject><subject>Oceans and Seas</subject><subject>Pacific Ocean</subject><subject>Phytoplankton - physiology</subject><subject>Pliocene</subject><subject>Salinity</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Seasons</subject><subject>Seawater</subject><subject>Seawater - chemistry</subject><subject>Sodium Chloride - analysis</subject><subject>Stratification</subject><subject>Surface water</subject><subject>Surficial geology</subject><subject>Temperature</subject><subject>Temperature distribution</subject><subject>Time Factors</subject><subject>Vertical distribution</subject><subject>Water circulation</subject><subject>Water Movements</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqF0t2LEzEQAPAgildPn3yXVVARb8_M5nMfS_Hj4FDREx_DNJuUPbbZXrIL3n9_kRbbSrUEEpj8MgOTIeQp0HOgTL8LOIzR0YoJdY9MgCtZcqnVfTKhtNIl1UyekEcpXVNKBSj-kJwAr-u6UnpCzr72Hcaitw5DkYaIQ-tbm_c-FG0osLB91xS2a5c4uMfkgccuuSeb85T8-PD-avapvPzy8WI2vSxRMzqUTFIEAFFZy73yTeOV9Iqip9YB9TDPpamGuWik1r7mAijHOeONUB41Ijslr9d5V7G_GV0azLJN1nUdBtePySjOmFKyklm--r8EWSsp4SisgGkQSh2FoCkTwOlxyGXNayYyfPEXvO7HGHIDTUW54KxmPKNyjRbYOdMG3-e_sAsXXMSuD863OTwFLZkCJvg26Z63q_bG7KLzAyivxi1bezDrm70H2Qzu17DAMSVz8f3bvn37bzu9-jn7fFDb2KcUnTermGcq3hqg5vcYm50xzvrZpmXjfOmard3MbQYvNwCTxc5HDLZNWyeEFLWusjtbu5SvwsLFbe8P132-5uvgn3y75g6IEg7b</recordid><startdate>20040304</startdate><enddate>20040304</enddate><creator>Sigman, Daniel M</creator><creator>Jaccard, Samuel L</creator><creator>Haug, Gerald H</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040304</creationdate><title>Polar ocean stratification in a cold climate</title><author>Sigman, Daniel M ; Jaccard, Samuel L ; Haug, Gerald H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a830t-360a11152cc4f7fddf76f70af0ce10f1b927081b5d688f945104ab34d57fa8aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Atmosphere - chemistry</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - analysis</topic><topic>Climate</topic><topic>Cold</topic><topic>Cold Climate</topic><topic>Cooling</topic><topic>Deep sea</topic><topic>Diatoms - physiology</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Eukaryota - physiology</topic><topic>Exact sciences and technology</topic><topic>Freezing</topic><topic>Freezing point</topic><topic>Geologic Sediments - chemistry</topic><topic>Glaciation</topic><topic>Humanities and Social Sciences</topic><topic>Ice</topic><topic>Latitude</topic><topic>letter</topic><topic>Marine</topic><topic>Marine and continental quaternary</topic><topic>multidisciplinary</topic><topic>Nitrogen - analysis</topic><topic>Ocean circulation</topic><topic>Oceans</topic><topic>Oceans and Seas</topic><topic>Pacific Ocean</topic><topic>Phytoplankton - physiology</topic><topic>Pliocene</topic><topic>Salinity</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Seasons</topic><topic>Seawater</topic><topic>Seawater - chemistry</topic><topic>Sodium Chloride - analysis</topic><topic>Stratification</topic><topic>Surface water</topic><topic>Surficial geology</topic><topic>Temperature</topic><topic>Temperature distribution</topic><topic>Time Factors</topic><topic>Vertical distribution</topic><topic>Water circulation</topic><topic>Water Movements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sigman, Daniel M</creatorcontrib><creatorcontrib>Jaccard, Samuel L</creatorcontrib><creatorcontrib>Haug, Gerald H</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sigman, Daniel M</au><au>Jaccard, Samuel L</au><au>Haug, Gerald H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polar ocean stratification in a cold climate</atitle><jtitle>Nature</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2004-03-04</date><risdate>2004</risdate><volume>428</volume><issue>6978</issue><spage>59</spage><epage>63</epage><pages>59-63</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The low-latitude ocean is strongly stratified by the warmth of its surface water. As a result, the great volume of the deep ocean has easiest access to the atmosphere through the polar surface ocean. In the modern polar ocean during the winter, the vertical distribution of temperature promotes overturning, with colder water over warmer, while the salinity distribution typically promotes stratification, with fresher water over saltier. However, the sensitivity of seawater density to temperature is reduced as temperature approaches the freezing point, with potential consequences for global ocean circulation under cold climates. Here we present deep-sea records of biogenic opal accumulation and sedimentary nitrogen isotopic composition from the Subarctic North Pacific Ocean and the Southern Ocean. These records indicate that vertical stratification increased in both northern and southern high latitudes 2.7 million years ago, when Northern Hemisphere glaciation intensified in association with global cooling during the late Pliocene epoch. We propose that the cooling caused this increased stratification by weakening the role of temperature in polar ocean density structure so as to reduce its opposition to the stratifying effect of the vertical salinity distribution. The shift towards stratification in the polar ocean 2.7 million years ago may have increased the quantity of carbon dioxide trapped in the abyss, amplifying the global cooling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>14999278</pmid><doi>10.1038/nature02357</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature, 2004-03, Vol.428 (6978), p.59-63 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_743377626 |
source | Nature |
subjects | Animals Atmosphere - chemistry Carbon dioxide Carbon Dioxide - analysis Climate Cold Cold Climate Cooling Deep sea Diatoms - physiology Earth sciences Earth, ocean, space Eukaryota - physiology Exact sciences and technology Freezing Freezing point Geologic Sediments - chemistry Glaciation Humanities and Social Sciences Ice Latitude letter Marine Marine and continental quaternary multidisciplinary Nitrogen - analysis Ocean circulation Oceans Oceans and Seas Pacific Ocean Phytoplankton - physiology Pliocene Salinity Science Science (multidisciplinary) Seasons Seawater Seawater - chemistry Sodium Chloride - analysis Stratification Surface water Surficial geology Temperature Temperature distribution Time Factors Vertical distribution Water circulation Water Movements |
title | Polar ocean stratification in a cold climate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A32%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polar%20ocean%20stratification%20in%20a%20cold%20climate&rft.jtitle=Nature&rft.au=Sigman,%20Daniel%20M&rft.date=2004-03-04&rft.volume=428&rft.issue=6978&rft.spage=59&rft.epage=63&rft.pages=59-63&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature02357&rft_dat=%3Cgale_proqu%3EA186371354%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a830t-360a11152cc4f7fddf76f70af0ce10f1b927081b5d688f945104ab34d57fa8aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204543934&rft_id=info:pmid/14999278&rft_galeid=A186371354&rfr_iscdi=true |