Loading…

Predictability of Cold Spring Seasons in Europe

The seasonal predictability of cold spring seasons (March-May) in Europe from hindcasts/forecasts of three operational coupled general circulation models (CGCMs) is investigated. The models used in the investigation are the Met Office Global Seasonal Forecast System (GloSea), the ECMWF System-2 (S2)...

Full description

Saved in:
Bibliographic Details
Published in:Monthly weather review 2007-12, Vol.135 (12), p.4185-4201
Main Authors: SHONGWE, Mxolisi E, FERRO, Christopher A. T, COELHO, Caio A. S, VAN OLDENBORGH, Geert Jan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The seasonal predictability of cold spring seasons (March-May) in Europe from hindcasts/forecasts of three operational coupled general circulation models (CGCMs) is investigated. The models used in the investigation are the Met Office Global Seasonal Forecast System (GloSea), the ECMWF System-2 (S2), and the NCEP Climate Forecast System (CFS). Using the relative operating characteristic score and the Brier skill score the long-term prediction skill for spring 2-m temperature in the lower quintile (20%) is assessed. Over much of central and eastern Europe the predictive skill is found to be high. The skill of the Met Office GloSea and ECMWF S2 models significantly surpasses that of damped persistence over much of Europe but the NCEP CFS model outperforms this reference forecast only over a small area. The higher potential predictability of cold spring seasons in eastern relative to southwestern Europe can be attributed to snow effects as areas of high skill closely correspond with the climatological snow line, and snow is shown in this paper to be linked to cold spring 2-m temperatures in eastern Europe. The ability of the models to represent snow cover during the melt season is also investigated. The Met Office GloSea and the ECMWF S2 models are able to accurately mimic the observed pattern of monthly snow-cover interannual variability, but the NCEP CFS model predicts too short a snow season. Improvements in the snow analysis and land surface parameterizations could increase the skill of seasonal forecasts for cold spring temperatures. [PUBLICATION ABSTRACT]
ISSN:0027-0644
1520-0493
DOI:10.1175/2007MWR2094.1