Loading…

Optimizing the removal of small fish passage barriers

Removing small artificial barriers that hinder upstream migrations of fish is a major problem in riparian habitat restoration. Because of budgetary limitations, it is necessary to prioritize barrier removal and repair decisions. These have usually been based on scoring and ranking procedures, which,...

Full description

Saved in:
Bibliographic Details
Published in:Environmental modeling & assessment 2005-06, Vol.10 (2), p.85-98
Main Authors: O’Hanley, Jesse Rush, Tomberlin, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Removing small artificial barriers that hinder upstream migrations of fish is a major problem in riparian habitat restoration. Because of budgetary limitations, it is necessary to prioritize barrier removal and repair decisions. These have usually been based on scoring and ranking procedures, which, although simple to use, can be very inefficient in terms of increasing the amount of accessible instream habitat. We develop a novel decision-making approach, based on integer programming techniques, which optimizes repair and removal decisions. Results show based on real datasets of barrier culverts located in Washington State that scoring and ranking is over 25% below the optimum on average and a full 100% below in the worst case, producing no net habitat gain whatsoever. This is compared to a dynamic programming method that was able to find optimal solutions in less than a second, even for problems with up to several hundred variables, and a heuristic method, which found solutions with less than a 1% average optimality gap in even less time.
ISSN:1420-2026
1573-2967
DOI:10.1007/s10666-004-4268-y