Loading…
Optical Matter: Crystallization and Binding in Intense Optical Fields
Properly fashioned electromagnetic fields coupled to microscopic dielectric objects can be used to create arrays of extended crystalline and noncrystalline structures. Organization can be achieved in two ways: In the first, dielectric matter is transported in direct response to the externally applie...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 1990-08, Vol.249 (4970), p.749-754 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Properly fashioned electromagnetic fields coupled to microscopic dielectric objects can be used to create arrays of extended crystalline and noncrystalline structures. Organization can be achieved in two ways: In the first, dielectric matter is transported in direct response to the externally applied standing wave optical fields. In the second, the external optical fields induce interactions between dielectric objects that can also result in the creation of complex structures. In either case, these new ordered structures, whose existence depends on the presence of both light and polarizable matter, are referred to as optical matter. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.249.4970.749 |