Loading…
Robust Bayesian estimation of kinetics for the polymorphic transformation of L-glutamic acid crystals
Polymorphism, in which there exist different crystal forms for the same chemical compound, is an important phenomenon in pharmaceutical manufacturing. In this article, a kinetic model for the crystallization of L-glutamic acid polymorphs is developed from experimental data. This model appears to be...
Saved in:
Published in: | AIChE journal 2008-12, Vol.54 (12), p.3248-3259 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4793-ec72b9dcf93121074f99a6278699c5f077e7d337ce2851926792837ee7fa25db3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4793-ec72b9dcf93121074f99a6278699c5f077e7d337ce2851926792837ee7fa25db3 |
container_end_page | 3259 |
container_issue | 12 |
container_start_page | 3248 |
container_title | AIChE journal |
container_volume | 54 |
creator | Hermanto, Martin Wijaya Kee, Nicholas C Tan, Reginald B.H Chiu, Min-Sen Braatz, Richard D |
description | Polymorphism, in which there exist different crystal forms for the same chemical compound, is an important phenomenon in pharmaceutical manufacturing. In this article, a kinetic model for the crystallization of L-glutamic acid polymorphs is developed from experimental data. This model appears to be the first to include all of the transformation kinetic parameters including dependence on the temperature. The kinetic parameters are estimated by Bayesian inference from batch data collected from two in situ measurements: ATR-FTIR spectroscopy is used to infer the solute concentration, and FBRM that provides crystal size information. Probability distributions of the estimated parameters in addition to their point estimates are obtained by Markov Chain Monte Carlo simulation. The kinetic model can be used to better understand the effects of operating conditions on crystal quality, and the probability distributions can be used to assess the accuracy of model predictions and incorporated into robust control strategies for polymorphic crystallization. © 2008 American Institute of Chemical Engineers AIChE J, 2008 |
doi_str_mv | 10.1002/aic.11623 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743405377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35591249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4793-ec72b9dcf93121074f99a6278699c5f077e7d337ce2851926792837ee7fa25db3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMoOK4e_AUGQcVD76aSTlfnuDv4sTAgqHsOmUyym7WnMybdSP97S2dVEPRUVNVTL1X1MvYUxCkIIc9c8qcAnVT32Ap0i402Qt9nKyEENFSAh-xRrbeUSezlioWPeTvXiV-4JdTkRh7qlPZuSnnkOfIvaQxT8pXHXPh0E_ghD8s-l8NN8nwqbqzU-INvmuthntyems6nHfdlqZMb6mP2IFIIT-7iCbt6--bz-n2z-fDucn2-aXyLRjXBo9yanY9GgQSBbTTGdbRoZ4zXUSAG3CmFPsheg5EdGtkrDAGjk3q3VSfs1VH3UPLXmU6x-1R9GAY3hjxXi61qhVaIRL78L6m0NiBbQ-Dzv8DbPJeRrrBgjOp7VEDQ6yPkS661hGgPhb5YFgvC_vDFki_2py_EvrgTdNW7IdITfaq_B6TosTNaEnd25L6lISz_FrTnl-tfys-OE9Fl664LqV59kgKUAN0p6Dv1HZ2epGM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199388731</pqid></control><display><type>article</type><title>Robust Bayesian estimation of kinetics for the polymorphic transformation of L-glutamic acid crystals</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Hermanto, Martin Wijaya ; Kee, Nicholas C ; Tan, Reginald B.H ; Chiu, Min-Sen ; Braatz, Richard D</creator><creatorcontrib>Hermanto, Martin Wijaya ; Kee, Nicholas C ; Tan, Reginald B.H ; Chiu, Min-Sen ; Braatz, Richard D</creatorcontrib><description>Polymorphism, in which there exist different crystal forms for the same chemical compound, is an important phenomenon in pharmaceutical manufacturing. In this article, a kinetic model for the crystallization of L-glutamic acid polymorphs is developed from experimental data. This model appears to be the first to include all of the transformation kinetic parameters including dependence on the temperature. The kinetic parameters are estimated by Bayesian inference from batch data collected from two in situ measurements: ATR-FTIR spectroscopy is used to infer the solute concentration, and FBRM that provides crystal size information. Probability distributions of the estimated parameters in addition to their point estimates are obtained by Markov Chain Monte Carlo simulation. The kinetic model can be used to better understand the effects of operating conditions on crystal quality, and the probability distributions can be used to assess the accuracy of model predictions and incorporated into robust control strategies for polymorphic crystallization. © 2008 American Institute of Chemical Engineers AIChE J, 2008</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.11623</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Analytical chemistry ; Applied sciences ; Bayesian inference ; Chemical engineering ; Crystallization ; Crystallization, leaching, miscellaneous separations ; Exact sciences and technology ; Markov analysis ; Markov Chain Monte Carlo ; Monte Carlo simulation ; pharmaceutical crystallization modeling ; Polymorphism ; Reaction kinetics ; Robust control</subject><ispartof>AIChE journal, 2008-12, Vol.54 (12), p.3248-3259</ispartof><rights>Copyright © 2008 American Institute of Chemical Engineers (AIChE)</rights><rights>2009 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Dec 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4793-ec72b9dcf93121074f99a6278699c5f077e7d337ce2851926792837ee7fa25db3</citedby><cites>FETCH-LOGICAL-c4793-ec72b9dcf93121074f99a6278699c5f077e7d337ce2851926792837ee7fa25db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20876952$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hermanto, Martin Wijaya</creatorcontrib><creatorcontrib>Kee, Nicholas C</creatorcontrib><creatorcontrib>Tan, Reginald B.H</creatorcontrib><creatorcontrib>Chiu, Min-Sen</creatorcontrib><creatorcontrib>Braatz, Richard D</creatorcontrib><title>Robust Bayesian estimation of kinetics for the polymorphic transformation of L-glutamic acid crystals</title><title>AIChE journal</title><description>Polymorphism, in which there exist different crystal forms for the same chemical compound, is an important phenomenon in pharmaceutical manufacturing. In this article, a kinetic model for the crystallization of L-glutamic acid polymorphs is developed from experimental data. This model appears to be the first to include all of the transformation kinetic parameters including dependence on the temperature. The kinetic parameters are estimated by Bayesian inference from batch data collected from two in situ measurements: ATR-FTIR spectroscopy is used to infer the solute concentration, and FBRM that provides crystal size information. Probability distributions of the estimated parameters in addition to their point estimates are obtained by Markov Chain Monte Carlo simulation. The kinetic model can be used to better understand the effects of operating conditions on crystal quality, and the probability distributions can be used to assess the accuracy of model predictions and incorporated into robust control strategies for polymorphic crystallization. © 2008 American Institute of Chemical Engineers AIChE J, 2008</description><subject>Analytical chemistry</subject><subject>Applied sciences</subject><subject>Bayesian inference</subject><subject>Chemical engineering</subject><subject>Crystallization</subject><subject>Crystallization, leaching, miscellaneous separations</subject><subject>Exact sciences and technology</subject><subject>Markov analysis</subject><subject>Markov Chain Monte Carlo</subject><subject>Monte Carlo simulation</subject><subject>pharmaceutical crystallization modeling</subject><subject>Polymorphism</subject><subject>Reaction kinetics</subject><subject>Robust control</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kU2LFDEQhoMoOK4e_AUGQcVD76aSTlfnuDv4sTAgqHsOmUyym7WnMybdSP97S2dVEPRUVNVTL1X1MvYUxCkIIc9c8qcAnVT32Ap0i402Qt9nKyEENFSAh-xRrbeUSezlioWPeTvXiV-4JdTkRh7qlPZuSnnkOfIvaQxT8pXHXPh0E_ghD8s-l8NN8nwqbqzU-INvmuthntyems6nHfdlqZMb6mP2IFIIT-7iCbt6--bz-n2z-fDucn2-aXyLRjXBo9yanY9GgQSBbTTGdbRoZ4zXUSAG3CmFPsheg5EdGtkrDAGjk3q3VSfs1VH3UPLXmU6x-1R9GAY3hjxXi61qhVaIRL78L6m0NiBbQ-Dzv8DbPJeRrrBgjOp7VEDQ6yPkS661hGgPhb5YFgvC_vDFki_2py_EvrgTdNW7IdITfaq_B6TosTNaEnd25L6lISz_FrTnl-tfys-OE9Fl664LqV59kgKUAN0p6Dv1HZ2epGM</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Hermanto, Martin Wijaya</creator><creator>Kee, Nicholas C</creator><creator>Tan, Reginald B.H</creator><creator>Chiu, Min-Sen</creator><creator>Braatz, Richard D</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>American Institute of Chemical Engineers</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>200812</creationdate><title>Robust Bayesian estimation of kinetics for the polymorphic transformation of L-glutamic acid crystals</title><author>Hermanto, Martin Wijaya ; Kee, Nicholas C ; Tan, Reginald B.H ; Chiu, Min-Sen ; Braatz, Richard D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4793-ec72b9dcf93121074f99a6278699c5f077e7d337ce2851926792837ee7fa25db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical chemistry</topic><topic>Applied sciences</topic><topic>Bayesian inference</topic><topic>Chemical engineering</topic><topic>Crystallization</topic><topic>Crystallization, leaching, miscellaneous separations</topic><topic>Exact sciences and technology</topic><topic>Markov analysis</topic><topic>Markov Chain Monte Carlo</topic><topic>Monte Carlo simulation</topic><topic>pharmaceutical crystallization modeling</topic><topic>Polymorphism</topic><topic>Reaction kinetics</topic><topic>Robust control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hermanto, Martin Wijaya</creatorcontrib><creatorcontrib>Kee, Nicholas C</creatorcontrib><creatorcontrib>Tan, Reginald B.H</creatorcontrib><creatorcontrib>Chiu, Min-Sen</creatorcontrib><creatorcontrib>Braatz, Richard D</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hermanto, Martin Wijaya</au><au>Kee, Nicholas C</au><au>Tan, Reginald B.H</au><au>Chiu, Min-Sen</au><au>Braatz, Richard D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Bayesian estimation of kinetics for the polymorphic transformation of L-glutamic acid crystals</atitle><jtitle>AIChE journal</jtitle><date>2008-12</date><risdate>2008</risdate><volume>54</volume><issue>12</issue><spage>3248</spage><epage>3259</epage><pages>3248-3259</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Polymorphism, in which there exist different crystal forms for the same chemical compound, is an important phenomenon in pharmaceutical manufacturing. In this article, a kinetic model for the crystallization of L-glutamic acid polymorphs is developed from experimental data. This model appears to be the first to include all of the transformation kinetic parameters including dependence on the temperature. The kinetic parameters are estimated by Bayesian inference from batch data collected from two in situ measurements: ATR-FTIR spectroscopy is used to infer the solute concentration, and FBRM that provides crystal size information. Probability distributions of the estimated parameters in addition to their point estimates are obtained by Markov Chain Monte Carlo simulation. The kinetic model can be used to better understand the effects of operating conditions on crystal quality, and the probability distributions can be used to assess the accuracy of model predictions and incorporated into robust control strategies for polymorphic crystallization. © 2008 American Institute of Chemical Engineers AIChE J, 2008</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.11623</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2008-12, Vol.54 (12), p.3248-3259 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_743405377 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Analytical chemistry Applied sciences Bayesian inference Chemical engineering Crystallization Crystallization, leaching, miscellaneous separations Exact sciences and technology Markov analysis Markov Chain Monte Carlo Monte Carlo simulation pharmaceutical crystallization modeling Polymorphism Reaction kinetics Robust control |
title | Robust Bayesian estimation of kinetics for the polymorphic transformation of L-glutamic acid crystals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Bayesian%20estimation%20of%20kinetics%20for%20the%20polymorphic%20transformation%20of%20L-glutamic%20acid%20crystals&rft.jtitle=AIChE%20journal&rft.au=Hermanto,%20Martin%20Wijaya&rft.date=2008-12&rft.volume=54&rft.issue=12&rft.spage=3248&rft.epage=3259&rft.pages=3248-3259&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.11623&rft_dat=%3Cproquest_cross%3E35591249%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4793-ec72b9dcf93121074f99a6278699c5f077e7d337ce2851926792837ee7fa25db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=199388731&rft_id=info:pmid/&rfr_iscdi=true |