Loading…

RopGAP4-Dependent Rop GTPase Rheostat Control of Arabidopsis Oxygen Deprivation Tolerance

Transient soil flooding limits cellular oxygen to roots and reduces crop yield. Plant response to oxygen deprivation involves increased expression of the alcohol dehydrogenase gene (ADH) and ethanolic fermentation. Disruption of the Arabidopsis gene that encodes Rop (RHO-like small G protein of plan...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2002-06, Vol.296 (5575), p.2026-2028
Main Authors: Baxter-Burrell, Airica, Yang, Zhenbiao, Springer, Patricia S., Bailey-Serres, Julia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transient soil flooding limits cellular oxygen to roots and reduces crop yield. Plant response to oxygen deprivation involves increased expression of the alcohol dehydrogenase gene (ADH) and ethanolic fermentation. Disruption of the Arabidopsis gene that encodes Rop (RHO-like small G protein of plants) guanosine triphosphatase (GTPase) activating protein 4 (ROPGAP4), a Rop deactivator, elevates ADH expression in response to oxygen deprivation but decreases tolerance to stress. Rop-dependent production of hydrogen peroxide via a diphenylene iodonium chloride-sensitive calcium-dependent reduced nicotinamide adenine dinucleotide phosphatase (NADPH) oxidase is necessary for induction of both ADH and RopGAP4 expression. Tolerance to oxygen deprivation requires Rop activation and RopGAP4-dependent negative feedback regulation. This Rop signal transduction rheostat balances the ability to increase ethanolic fermentation with survival.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1071505