Loading…

Assembling the Building Blocks of Giant Planets Around Intermediate-Mass Stars

We examine a physical process that leads to the efficient formation of gas giant planets around intermediate-mass stars. In the gaseous protoplanetary disks surrounding rapidly accreting intermediate-mass stars, we show that the midplane temperature (heated primarily by turbulent dissipation) can re...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2009-01, Vol.690 (1), p.407-415
Main Authors: Kretke, K. A, Lin, D. N. C, Garaud, P, Turner, N. J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c461t-8079e73dce07e429a81188f5f5694cbf858f4fc22a5ff084c39759a6c22509263
cites cdi_FETCH-LOGICAL-c461t-8079e73dce07e429a81188f5f5694cbf858f4fc22a5ff084c39759a6c22509263
container_end_page 415
container_issue 1
container_start_page 407
container_title The Astrophysical journal
container_volume 690
creator Kretke, K. A
Lin, D. N. C
Garaud, P
Turner, N. J
description We examine a physical process that leads to the efficient formation of gas giant planets around intermediate-mass stars. In the gaseous protoplanetary disks surrounding rapidly accreting intermediate-mass stars, we show that the midplane temperature (heated primarily by turbulent dissipation) can reach 1000 K out to 1 AU. The thermal ionization of this hot gas couples the disk to the magnetic field, allowing the magnetorotational instability (MRI) to generate turbulence and transport angular momentum. Further from the central star the ionization fraction decreases, decoupling the disk from the magnetic field and reducing the efficiency of angular momentum transport. As the disk evolves toward a quasi-steady state, a local maximum in the surface density and in the midplane pressure both develop at the inner edge of the MRI-dead zone, trapping inwardly migrating solid bodies. Small particles accumulate and coagulate into planetesimals which grow rapidly until they reach isolation mass. In contrast to the situation around solar-type stars, we show that the isolation mass for cores at this critical radius around the more-massive stars is large enough to promote the accretion of significant amounts of gas prior to disk depletion. Through this process, we anticipate a prolific production of gas giants at ~1 AU around intermediate-mass stars.
doi_str_mv 10.1088/0004-637X/690/1/407
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_743472938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743472938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-8079e73dce07e429a81188f5f5694cbf858f4fc22a5ff084c39759a6c22509263</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKu_wM1sVBCmTSaZSbKsRWuhfoAK7kKaSXR0vsybLvz3ZmzpRukqvLzzLpeD0CnBI4KFGGOMWZxR_jrOJB6TMcN8Dw1ISkXMaMr30WBLHKIjgI9-TKQcoPsJgK2WZVG_Rd27ja5WRZn3w1XZmE-IGhfNCl130WOpa9tBNPHNqs6jed1ZX9m80J2N7zRA9NRpD8fowOkS7MnmHaKXm-vn6W28eJjNp5NFbFhGulhgLi2nubGY21BEC0KEcKlLM8nM0olUOOZMkujUOSyYoZKnUmfhJ8UyyegQXaxzW998rSx0qirA2LIv2axAcUYZTyQVgTzfSSY4ETT7jaRr0PgGwFunWl9U2n8rglVvWfXSVO9QBcuKqGA5XJ1t4jUYXTqva1PA9jQhoTknLHCXa65o2u32n0DV5i7Ao7_wrhY_TBOWeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20283626</pqid></control><display><type>article</type><title>Assembling the Building Blocks of Giant Planets Around Intermediate-Mass Stars</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Kretke, K. A ; Lin, D. N. C ; Garaud, P ; Turner, N. J</creator><creatorcontrib>Kretke, K. A ; Lin, D. N. C ; Garaud, P ; Turner, N. J</creatorcontrib><description>We examine a physical process that leads to the efficient formation of gas giant planets around intermediate-mass stars. In the gaseous protoplanetary disks surrounding rapidly accreting intermediate-mass stars, we show that the midplane temperature (heated primarily by turbulent dissipation) can reach 1000 K out to 1 AU. The thermal ionization of this hot gas couples the disk to the magnetic field, allowing the magnetorotational instability (MRI) to generate turbulence and transport angular momentum. Further from the central star the ionization fraction decreases, decoupling the disk from the magnetic field and reducing the efficiency of angular momentum transport. As the disk evolves toward a quasi-steady state, a local maximum in the surface density and in the midplane pressure both develop at the inner edge of the MRI-dead zone, trapping inwardly migrating solid bodies. Small particles accumulate and coagulate into planetesimals which grow rapidly until they reach isolation mass. In contrast to the situation around solar-type stars, we show that the isolation mass for cores at this critical radius around the more-massive stars is large enough to promote the accretion of significant amounts of gas prior to disk depletion. Through this process, we anticipate a prolific production of gas giants at ~1 AU around intermediate-mass stars.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/690/1/407</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology</subject><ispartof>The Astrophysical journal, 2009-01, Vol.690 (1), p.407-415</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-8079e73dce07e429a81188f5f5694cbf858f4fc22a5ff084c39759a6c22509263</citedby><cites>FETCH-LOGICAL-c461t-8079e73dce07e429a81188f5f5694cbf858f4fc22a5ff084c39759a6c22509263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21397714$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kretke, K. A</creatorcontrib><creatorcontrib>Lin, D. N. C</creatorcontrib><creatorcontrib>Garaud, P</creatorcontrib><creatorcontrib>Turner, N. J</creatorcontrib><title>Assembling the Building Blocks of Giant Planets Around Intermediate-Mass Stars</title><title>The Astrophysical journal</title><description>We examine a physical process that leads to the efficient formation of gas giant planets around intermediate-mass stars. In the gaseous protoplanetary disks surrounding rapidly accreting intermediate-mass stars, we show that the midplane temperature (heated primarily by turbulent dissipation) can reach 1000 K out to 1 AU. The thermal ionization of this hot gas couples the disk to the magnetic field, allowing the magnetorotational instability (MRI) to generate turbulence and transport angular momentum. Further from the central star the ionization fraction decreases, decoupling the disk from the magnetic field and reducing the efficiency of angular momentum transport. As the disk evolves toward a quasi-steady state, a local maximum in the surface density and in the midplane pressure both develop at the inner edge of the MRI-dead zone, trapping inwardly migrating solid bodies. Small particles accumulate and coagulate into planetesimals which grow rapidly until they reach isolation mass. In contrast to the situation around solar-type stars, we show that the isolation mass for cores at this critical radius around the more-massive stars is large enough to promote the accretion of significant amounts of gas prior to disk depletion. Through this process, we anticipate a prolific production of gas giants at ~1 AU around intermediate-mass stars.</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKu_wM1sVBCmTSaZSbKsRWuhfoAK7kKaSXR0vsybLvz3ZmzpRukqvLzzLpeD0CnBI4KFGGOMWZxR_jrOJB6TMcN8Dw1ISkXMaMr30WBLHKIjgI9-TKQcoPsJgK2WZVG_Rd27ja5WRZn3w1XZmE-IGhfNCl130WOpa9tBNPHNqs6jed1ZX9m80J2N7zRA9NRpD8fowOkS7MnmHaKXm-vn6W28eJjNp5NFbFhGulhgLi2nubGY21BEC0KEcKlLM8nM0olUOOZMkujUOSyYoZKnUmfhJ8UyyegQXaxzW998rSx0qirA2LIv2axAcUYZTyQVgTzfSSY4ETT7jaRr0PgGwFunWl9U2n8rglVvWfXSVO9QBcuKqGA5XJ1t4jUYXTqva1PA9jQhoTknLHCXa65o2u32n0DV5i7Ao7_wrhY_TBOWeQ</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Kretke, K. A</creator><creator>Lin, D. N. C</creator><creator>Garaud, P</creator><creator>Turner, N. J</creator><general>IOP Publishing</general><general>IOP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20090101</creationdate><title>Assembling the Building Blocks of Giant Planets Around Intermediate-Mass Stars</title><author>Kretke, K. A ; Lin, D. N. C ; Garaud, P ; Turner, N. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-8079e73dce07e429a81188f5f5694cbf858f4fc22a5ff084c39759a6c22509263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kretke, K. A</creatorcontrib><creatorcontrib>Lin, D. N. C</creatorcontrib><creatorcontrib>Garaud, P</creatorcontrib><creatorcontrib>Turner, N. J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kretke, K. A</au><au>Lin, D. N. C</au><au>Garaud, P</au><au>Turner, N. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assembling the Building Blocks of Giant Planets Around Intermediate-Mass Stars</atitle><jtitle>The Astrophysical journal</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>690</volume><issue>1</issue><spage>407</spage><epage>415</epage><pages>407-415</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>We examine a physical process that leads to the efficient formation of gas giant planets around intermediate-mass stars. In the gaseous protoplanetary disks surrounding rapidly accreting intermediate-mass stars, we show that the midplane temperature (heated primarily by turbulent dissipation) can reach 1000 K out to 1 AU. The thermal ionization of this hot gas couples the disk to the magnetic field, allowing the magnetorotational instability (MRI) to generate turbulence and transport angular momentum. Further from the central star the ionization fraction decreases, decoupling the disk from the magnetic field and reducing the efficiency of angular momentum transport. As the disk evolves toward a quasi-steady state, a local maximum in the surface density and in the midplane pressure both develop at the inner edge of the MRI-dead zone, trapping inwardly migrating solid bodies. Small particles accumulate and coagulate into planetesimals which grow rapidly until they reach isolation mass. In contrast to the situation around solar-type stars, we show that the isolation mass for cores at this critical radius around the more-massive stars is large enough to promote the accretion of significant amounts of gas prior to disk depletion. Through this process, we anticipate a prolific production of gas giants at ~1 AU around intermediate-mass stars.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0004-637X/690/1/407</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2009-01, Vol.690 (1), p.407-415
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_miscellaneous_743472938
source Free E-Journal (出版社公開部分のみ)
subjects Astronomy
Earth, ocean, space
Exact sciences and technology
title Assembling the Building Blocks of Giant Planets Around Intermediate-Mass Stars
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assembling%20the%20Building%20Blocks%20of%20Giant%20Planets%20Around%20Intermediate-Mass%20Stars&rft.jtitle=The%20Astrophysical%20journal&rft.au=Kretke,%20K.%20A&rft.date=2009-01-01&rft.volume=690&rft.issue=1&rft.spage=407&rft.epage=415&rft.pages=407-415&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1088/0004-637X/690/1/407&rft_dat=%3Cproquest_pasca%3E743472938%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-8079e73dce07e429a81188f5f5694cbf858f4fc22a5ff084c39759a6c22509263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20283626&rft_id=info:pmid/&rfr_iscdi=true