Loading…
Assembling the Building Blocks of Giant Planets Around Intermediate-Mass Stars
We examine a physical process that leads to the efficient formation of gas giant planets around intermediate-mass stars. In the gaseous protoplanetary disks surrounding rapidly accreting intermediate-mass stars, we show that the midplane temperature (heated primarily by turbulent dissipation) can re...
Saved in:
Published in: | The Astrophysical journal 2009-01, Vol.690 (1), p.407-415 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c461t-8079e73dce07e429a81188f5f5694cbf858f4fc22a5ff084c39759a6c22509263 |
---|---|
cites | cdi_FETCH-LOGICAL-c461t-8079e73dce07e429a81188f5f5694cbf858f4fc22a5ff084c39759a6c22509263 |
container_end_page | 415 |
container_issue | 1 |
container_start_page | 407 |
container_title | The Astrophysical journal |
container_volume | 690 |
creator | Kretke, K. A Lin, D. N. C Garaud, P Turner, N. J |
description | We examine a physical process that leads to the efficient formation of gas giant planets around intermediate-mass stars. In the gaseous protoplanetary disks surrounding rapidly accreting intermediate-mass stars, we show that the midplane temperature (heated primarily by turbulent dissipation) can reach 1000 K out to 1 AU. The thermal ionization of this hot gas couples the disk to the magnetic field, allowing the magnetorotational instability (MRI) to generate turbulence and transport angular momentum. Further from the central star the ionization fraction decreases, decoupling the disk from the magnetic field and reducing the efficiency of angular momentum transport. As the disk evolves toward a quasi-steady state, a local maximum in the surface density and in the midplane pressure both develop at the inner edge of the MRI-dead zone, trapping inwardly migrating solid bodies. Small particles accumulate and coagulate into planetesimals which grow rapidly until they reach isolation mass. In contrast to the situation around solar-type stars, we show that the isolation mass for cores at this critical radius around the more-massive stars is large enough to promote the accretion of significant amounts of gas prior to disk depletion. Through this process, we anticipate a prolific production of gas giants at ~1 AU around intermediate-mass stars. |
doi_str_mv | 10.1088/0004-637X/690/1/407 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_743472938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743472938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-8079e73dce07e429a81188f5f5694cbf858f4fc22a5ff084c39759a6c22509263</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKu_wM1sVBCmTSaZSbKsRWuhfoAK7kKaSXR0vsybLvz3ZmzpRukqvLzzLpeD0CnBI4KFGGOMWZxR_jrOJB6TMcN8Dw1ISkXMaMr30WBLHKIjgI9-TKQcoPsJgK2WZVG_Rd27ja5WRZn3w1XZmE-IGhfNCl130WOpa9tBNPHNqs6jed1ZX9m80J2N7zRA9NRpD8fowOkS7MnmHaKXm-vn6W28eJjNp5NFbFhGulhgLi2nubGY21BEC0KEcKlLM8nM0olUOOZMkujUOSyYoZKnUmfhJ8UyyegQXaxzW998rSx0qirA2LIv2axAcUYZTyQVgTzfSSY4ETT7jaRr0PgGwFunWl9U2n8rglVvWfXSVO9QBcuKqGA5XJ1t4jUYXTqva1PA9jQhoTknLHCXa65o2u32n0DV5i7Ao7_wrhY_TBOWeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20283626</pqid></control><display><type>article</type><title>Assembling the Building Blocks of Giant Planets Around Intermediate-Mass Stars</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Kretke, K. A ; Lin, D. N. C ; Garaud, P ; Turner, N. J</creator><creatorcontrib>Kretke, K. A ; Lin, D. N. C ; Garaud, P ; Turner, N. J</creatorcontrib><description>We examine a physical process that leads to the efficient formation of gas giant planets around intermediate-mass stars. In the gaseous protoplanetary disks surrounding rapidly accreting intermediate-mass stars, we show that the midplane temperature (heated primarily by turbulent dissipation) can reach 1000 K out to 1 AU. The thermal ionization of this hot gas couples the disk to the magnetic field, allowing the magnetorotational instability (MRI) to generate turbulence and transport angular momentum. Further from the central star the ionization fraction decreases, decoupling the disk from the magnetic field and reducing the efficiency of angular momentum transport. As the disk evolves toward a quasi-steady state, a local maximum in the surface density and in the midplane pressure both develop at the inner edge of the MRI-dead zone, trapping inwardly migrating solid bodies. Small particles accumulate and coagulate into planetesimals which grow rapidly until they reach isolation mass. In contrast to the situation around solar-type stars, we show that the isolation mass for cores at this critical radius around the more-massive stars is large enough to promote the accretion of significant amounts of gas prior to disk depletion. Through this process, we anticipate a prolific production of gas giants at ~1 AU around intermediate-mass stars.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/690/1/407</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology</subject><ispartof>The Astrophysical journal, 2009-01, Vol.690 (1), p.407-415</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-8079e73dce07e429a81188f5f5694cbf858f4fc22a5ff084c39759a6c22509263</citedby><cites>FETCH-LOGICAL-c461t-8079e73dce07e429a81188f5f5694cbf858f4fc22a5ff084c39759a6c22509263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21397714$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kretke, K. A</creatorcontrib><creatorcontrib>Lin, D. N. C</creatorcontrib><creatorcontrib>Garaud, P</creatorcontrib><creatorcontrib>Turner, N. J</creatorcontrib><title>Assembling the Building Blocks of Giant Planets Around Intermediate-Mass Stars</title><title>The Astrophysical journal</title><description>We examine a physical process that leads to the efficient formation of gas giant planets around intermediate-mass stars. In the gaseous protoplanetary disks surrounding rapidly accreting intermediate-mass stars, we show that the midplane temperature (heated primarily by turbulent dissipation) can reach 1000 K out to 1 AU. The thermal ionization of this hot gas couples the disk to the magnetic field, allowing the magnetorotational instability (MRI) to generate turbulence and transport angular momentum. Further from the central star the ionization fraction decreases, decoupling the disk from the magnetic field and reducing the efficiency of angular momentum transport. As the disk evolves toward a quasi-steady state, a local maximum in the surface density and in the midplane pressure both develop at the inner edge of the MRI-dead zone, trapping inwardly migrating solid bodies. Small particles accumulate and coagulate into planetesimals which grow rapidly until they reach isolation mass. In contrast to the situation around solar-type stars, we show that the isolation mass for cores at this critical radius around the more-massive stars is large enough to promote the accretion of significant amounts of gas prior to disk depletion. Through this process, we anticipate a prolific production of gas giants at ~1 AU around intermediate-mass stars.</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKu_wM1sVBCmTSaZSbKsRWuhfoAK7kKaSXR0vsybLvz3ZmzpRukqvLzzLpeD0CnBI4KFGGOMWZxR_jrOJB6TMcN8Dw1ISkXMaMr30WBLHKIjgI9-TKQcoPsJgK2WZVG_Rd27ja5WRZn3w1XZmE-IGhfNCl130WOpa9tBNPHNqs6jed1ZX9m80J2N7zRA9NRpD8fowOkS7MnmHaKXm-vn6W28eJjNp5NFbFhGulhgLi2nubGY21BEC0KEcKlLM8nM0olUOOZMkujUOSyYoZKnUmfhJ8UyyegQXaxzW998rSx0qirA2LIv2axAcUYZTyQVgTzfSSY4ETT7jaRr0PgGwFunWl9U2n8rglVvWfXSVO9QBcuKqGA5XJ1t4jUYXTqva1PA9jQhoTknLHCXa65o2u32n0DV5i7Ao7_wrhY_TBOWeQ</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Kretke, K. A</creator><creator>Lin, D. N. C</creator><creator>Garaud, P</creator><creator>Turner, N. J</creator><general>IOP Publishing</general><general>IOP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20090101</creationdate><title>Assembling the Building Blocks of Giant Planets Around Intermediate-Mass Stars</title><author>Kretke, K. A ; Lin, D. N. C ; Garaud, P ; Turner, N. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-8079e73dce07e429a81188f5f5694cbf858f4fc22a5ff084c39759a6c22509263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kretke, K. A</creatorcontrib><creatorcontrib>Lin, D. N. C</creatorcontrib><creatorcontrib>Garaud, P</creatorcontrib><creatorcontrib>Turner, N. J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kretke, K. A</au><au>Lin, D. N. C</au><au>Garaud, P</au><au>Turner, N. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assembling the Building Blocks of Giant Planets Around Intermediate-Mass Stars</atitle><jtitle>The Astrophysical journal</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>690</volume><issue>1</issue><spage>407</spage><epage>415</epage><pages>407-415</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>We examine a physical process that leads to the efficient formation of gas giant planets around intermediate-mass stars. In the gaseous protoplanetary disks surrounding rapidly accreting intermediate-mass stars, we show that the midplane temperature (heated primarily by turbulent dissipation) can reach 1000 K out to 1 AU. The thermal ionization of this hot gas couples the disk to the magnetic field, allowing the magnetorotational instability (MRI) to generate turbulence and transport angular momentum. Further from the central star the ionization fraction decreases, decoupling the disk from the magnetic field and reducing the efficiency of angular momentum transport. As the disk evolves toward a quasi-steady state, a local maximum in the surface density and in the midplane pressure both develop at the inner edge of the MRI-dead zone, trapping inwardly migrating solid bodies. Small particles accumulate and coagulate into planetesimals which grow rapidly until they reach isolation mass. In contrast to the situation around solar-type stars, we show that the isolation mass for cores at this critical radius around the more-massive stars is large enough to promote the accretion of significant amounts of gas prior to disk depletion. Through this process, we anticipate a prolific production of gas giants at ~1 AU around intermediate-mass stars.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0004-637X/690/1/407</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2009-01, Vol.690 (1), p.407-415 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_miscellaneous_743472938 |
source | Free E-Journal (出版社公開部分のみ) |
subjects | Astronomy Earth, ocean, space Exact sciences and technology |
title | Assembling the Building Blocks of Giant Planets Around Intermediate-Mass Stars |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assembling%20the%20Building%20Blocks%20of%20Giant%20Planets%20Around%20Intermediate-Mass%20Stars&rft.jtitle=The%20Astrophysical%20journal&rft.au=Kretke,%20K.%20A&rft.date=2009-01-01&rft.volume=690&rft.issue=1&rft.spage=407&rft.epage=415&rft.pages=407-415&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1088/0004-637X/690/1/407&rft_dat=%3Cproquest_pasca%3E743472938%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-8079e73dce07e429a81188f5f5694cbf858f4fc22a5ff084c39759a6c22509263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20283626&rft_id=info:pmid/&rfr_iscdi=true |