Loading…
The Bjerknes effect: Explaining pulsed-flow behavior in bubble columns
New experimental data for a range of gas velocities from 0.1 to 1.5 cm/s are explained by an elementary theory that combines the effect of bubble retardation owing to Bjerknes forces with the breakage relationship of Hinze in a pulsed‐bubble column. A frequency range from 10 to 30 Hz, and two amplit...
Saved in:
Published in: | AIChE journal 2007-07, Vol.53 (7), p.1678-1686 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | New experimental data for a range of gas velocities from 0.1 to 1.5 cm/s are explained by an elementary theory that combines the effect of bubble retardation owing to Bjerknes forces with the breakage relationship of Hinze in a pulsed‐bubble column. A frequency range from 10 to 30 Hz, and two amplitudes of fluid oscillation were used in the 8.9 cm column: 1.66 and 2.46 mm. Experimental values of volumetric mass‐transfer coefficient for oxygen dissolution followed predictions of theory using a modified penetration model. A new phenomenon was observed and was predictable from theory, namely “flooding”, which arises when bubbles are partially or fully retarded by Bjerknes forces at the point of injection. Under flooding conditions, transport enhancement levels off as frequency or amplitude is increased. Bubble‐size distribution was measured as a function of frequency, and the calculated Sauter‐mean diameter was satisfactorily fitted by the Hinze breakage formula. © 2007 American Institute of Chemical Engineers AIChE J, 2007 |
---|---|
ISSN: | 0001-1541 1547-5905 |
DOI: | 10.1002/aic.11200 |