Loading…

The mosaic structure of variation in the laboratory mouse genome

Most inbred laboratory mouse strains are known to have originated from a mixed but limited founder population in a few laboratories. However, the effect of this breeding history on patterns of genetic variation among these strains and the implications for their use are not well understood. Here we p...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2002-12, Vol.420 (6915), p.574-578
Main Authors: Daly, Mark J, Wade, Claire M, Kulbokas, Edward J, Kirby, Andrew W, Zody, Michael C, Mullikin, James C, Lander, Eric S, Lindblad-Toh, Kerstin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c715t-4a19e8ca9f44939c869b42f5fcbe2e931cc568609c63677f7adcf2c6c949fec43
cites cdi_FETCH-LOGICAL-c715t-4a19e8ca9f44939c869b42f5fcbe2e931cc568609c63677f7adcf2c6c949fec43
container_end_page 578
container_issue 6915
container_start_page 574
container_title Nature (London)
container_volume 420
creator Daly, Mark J
Wade, Claire M
Kulbokas, Edward J
Kirby, Andrew W
Zody, Michael C
Mullikin, James C
Lander, Eric S
Lindblad-Toh, Kerstin
description Most inbred laboratory mouse strains are known to have originated from a mixed but limited founder population in a few laboratories. However, the effect of this breeding history on patterns of genetic variation among these strains and the implications for their use are not well understood. Here we present an analysis of the fine structure of variation in the mouse genome, using single nucleotide polymorphisms (SNPs). When the recently assembled genome sequence from the C57BL/6J strain is aligned with sample sequence from other strains, we observe long segments of either extremely high (∼40 SNPs per 10 kb) or extremely low (∼0.5 SNPs per 10 kb) polymorphism rates. In all strain-to-strain comparisons examined, only one-third of the genome falls into long regions (averaging >1 Mb) of a high SNP rate, consistent with estimated divergence rates between Mus musculus domesticus and either M. m. musculus or M. m. castaneus. These data suggest that the genomes of these inbred strains are mosaics with the vast majority of segments derived from domesticus and musculus sources. These observations have important implications for the design and interpretation of positional cloning experiments.
doi_str_mv 10.1038/nature01252
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743507825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A187569424</galeid><sourcerecordid>A187569424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c715t-4a19e8ca9f44939c869b42f5fcbe2e931cc568609c63677f7adcf2c6c949fec43</originalsourceid><addsrcrecordid>eNqF0s-LEzEUB_BBFLe7evIu4x4U0VmTTH7eLMUfC4uCVjyGNH2ps8xMuklmcf97U6bYVqqSQ-Dlky_J4xXFE4wuMKrlm96kIQDChJF7xQRTwSvKpbhfTBAiskKy5ifFaYzXCCGGBX1YnGBCOZeMTIq38x9Qdj6axpYxhcFuskrvylsTGpMa35dNX6aMWrPwwSQf7rIfIpQr6H0Hj4oHzrQRHm_3s-Lb-3fz2cfq6vOHy9n0qrICs1RRgxVIa5SjVNXKSq4WlDjm7AIIqBpby7jkSFlecyGcMEvriOVWUeXA0vqseDHmroO_GSAm3TXRQtuaHvJztKA1Q0ISluXzf0si2KYp_4VYMoEVlxme_wGv_RD6_F1NEKVSMLFJq0a0Mi3opnc-BWNzkyCY1vfgmlye4oy5ooTuQg-8XTc3eh9dHEF5LaFr7NHUlwcXsknwM63MEKO-_Prl0L76u53Ov88-HdU2-BgDOL0OTWfCncZIbwZR7w1i1k-3LRsWHSx3djt5GbweQcxH_QrCrqfH856NfCz-zts3vwCIYO_Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204487576</pqid></control><display><type>article</type><title>The mosaic structure of variation in the laboratory mouse genome</title><source>Nature</source><creator>Daly, Mark J ; Wade, Claire M ; Kulbokas, Edward J ; Kirby, Andrew W ; Zody, Michael C ; Mullikin, James C ; Lander, Eric S ; Lindblad-Toh, Kerstin</creator><creatorcontrib>Daly, Mark J ; Wade, Claire M ; Kulbokas, Edward J ; Kirby, Andrew W ; Zody, Michael C ; Mullikin, James C ; Lander, Eric S ; Lindblad-Toh, Kerstin</creatorcontrib><description>Most inbred laboratory mouse strains are known to have originated from a mixed but limited founder population in a few laboratories. However, the effect of this breeding history on patterns of genetic variation among these strains and the implications for their use are not well understood. Here we present an analysis of the fine structure of variation in the mouse genome, using single nucleotide polymorphisms (SNPs). When the recently assembled genome sequence from the C57BL/6J strain is aligned with sample sequence from other strains, we observe long segments of either extremely high (∼40 SNPs per 10 kb) or extremely low (∼0.5 SNPs per 10 kb) polymorphism rates. In all strain-to-strain comparisons examined, only one-third of the genome falls into long regions (averaging &gt;1 Mb) of a high SNP rate, consistent with estimated divergence rates between Mus musculus domesticus and either M. m. musculus or M. m. castaneus. These data suggest that the genomes of these inbred strains are mosaics with the vast majority of segments derived from domesticus and musculus sources. These observations have important implications for the design and interpretation of positional cloning experiments.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature01252</identifier><identifier>PMID: 12466852</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Albinism - genetics ; Animals ; Base Sequence ; Cloning ; Genetic diversity ; Genetic Variation - genetics ; Genome ; Genomics ; Haplotypes - genetics ; Humanities and Social Sciences ; Laboratory animals ; letters-to-nature ; Mice ; Mice, Inbred C57BL ; Mice, Inbred Strains - genetics ; Monophenol Monooxygenase - genetics ; multidisciplinary ; Mutation - genetics ; Phenotype ; Polymorphism, Single Nucleotide - genetics ; Recombination, Genetic - genetics ; Rodents ; Science ; Science (multidisciplinary)</subject><ispartof>Nature (London), 2002-12, Vol.420 (6915), p.574-578</ispartof><rights>Macmillan Magazines Ltd. 2003</rights><rights>COPYRIGHT 2002 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Dec 5, 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c715t-4a19e8ca9f44939c869b42f5fcbe2e931cc568609c63677f7adcf2c6c949fec43</citedby><cites>FETCH-LOGICAL-c715t-4a19e8ca9f44939c869b42f5fcbe2e931cc568609c63677f7adcf2c6c949fec43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12466852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Daly, Mark J</creatorcontrib><creatorcontrib>Wade, Claire M</creatorcontrib><creatorcontrib>Kulbokas, Edward J</creatorcontrib><creatorcontrib>Kirby, Andrew W</creatorcontrib><creatorcontrib>Zody, Michael C</creatorcontrib><creatorcontrib>Mullikin, James C</creatorcontrib><creatorcontrib>Lander, Eric S</creatorcontrib><creatorcontrib>Lindblad-Toh, Kerstin</creatorcontrib><title>The mosaic structure of variation in the laboratory mouse genome</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Most inbred laboratory mouse strains are known to have originated from a mixed but limited founder population in a few laboratories. However, the effect of this breeding history on patterns of genetic variation among these strains and the implications for their use are not well understood. Here we present an analysis of the fine structure of variation in the mouse genome, using single nucleotide polymorphisms (SNPs). When the recently assembled genome sequence from the C57BL/6J strain is aligned with sample sequence from other strains, we observe long segments of either extremely high (∼40 SNPs per 10 kb) or extremely low (∼0.5 SNPs per 10 kb) polymorphism rates. In all strain-to-strain comparisons examined, only one-third of the genome falls into long regions (averaging &gt;1 Mb) of a high SNP rate, consistent with estimated divergence rates between Mus musculus domesticus and either M. m. musculus or M. m. castaneus. These data suggest that the genomes of these inbred strains are mosaics with the vast majority of segments derived from domesticus and musculus sources. These observations have important implications for the design and interpretation of positional cloning experiments.</description><subject>Albinism - genetics</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Cloning</subject><subject>Genetic diversity</subject><subject>Genetic Variation - genetics</subject><subject>Genome</subject><subject>Genomics</subject><subject>Haplotypes - genetics</subject><subject>Humanities and Social Sciences</subject><subject>Laboratory animals</subject><subject>letters-to-nature</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Inbred Strains - genetics</subject><subject>Monophenol Monooxygenase - genetics</subject><subject>multidisciplinary</subject><subject>Mutation - genetics</subject><subject>Phenotype</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Recombination, Genetic - genetics</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqF0s-LEzEUB_BBFLe7evIu4x4U0VmTTH7eLMUfC4uCVjyGNH2ps8xMuklmcf97U6bYVqqSQ-Dlky_J4xXFE4wuMKrlm96kIQDChJF7xQRTwSvKpbhfTBAiskKy5ifFaYzXCCGGBX1YnGBCOZeMTIq38x9Qdj6axpYxhcFuskrvylsTGpMa35dNX6aMWrPwwSQf7rIfIpQr6H0Hj4oHzrQRHm_3s-Lb-3fz2cfq6vOHy9n0qrICs1RRgxVIa5SjVNXKSq4WlDjm7AIIqBpby7jkSFlecyGcMEvriOVWUeXA0vqseDHmroO_GSAm3TXRQtuaHvJztKA1Q0ISluXzf0si2KYp_4VYMoEVlxme_wGv_RD6_F1NEKVSMLFJq0a0Mi3opnc-BWNzkyCY1vfgmlye4oy5ooTuQg-8XTc3eh9dHEF5LaFr7NHUlwcXsknwM63MEKO-_Prl0L76u53Ov88-HdU2-BgDOL0OTWfCncZIbwZR7w1i1k-3LRsWHSx3djt5GbweQcxH_QrCrqfH856NfCz-zts3vwCIYO_Z</recordid><startdate>20021205</startdate><enddate>20021205</enddate><creator>Daly, Mark J</creator><creator>Wade, Claire M</creator><creator>Kulbokas, Edward J</creator><creator>Kirby, Andrew W</creator><creator>Zody, Michael C</creator><creator>Mullikin, James C</creator><creator>Lander, Eric S</creator><creator>Lindblad-Toh, Kerstin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20021205</creationdate><title>The mosaic structure of variation in the laboratory mouse genome</title><author>Daly, Mark J ; Wade, Claire M ; Kulbokas, Edward J ; Kirby, Andrew W ; Zody, Michael C ; Mullikin, James C ; Lander, Eric S ; Lindblad-Toh, Kerstin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c715t-4a19e8ca9f44939c869b42f5fcbe2e931cc568609c63677f7adcf2c6c949fec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Albinism - genetics</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Cloning</topic><topic>Genetic diversity</topic><topic>Genetic Variation - genetics</topic><topic>Genome</topic><topic>Genomics</topic><topic>Haplotypes - genetics</topic><topic>Humanities and Social Sciences</topic><topic>Laboratory animals</topic><topic>letters-to-nature</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Inbred Strains - genetics</topic><topic>Monophenol Monooxygenase - genetics</topic><topic>multidisciplinary</topic><topic>Mutation - genetics</topic><topic>Phenotype</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Recombination, Genetic - genetics</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daly, Mark J</creatorcontrib><creatorcontrib>Wade, Claire M</creatorcontrib><creatorcontrib>Kulbokas, Edward J</creatorcontrib><creatorcontrib>Kirby, Andrew W</creatorcontrib><creatorcontrib>Zody, Michael C</creatorcontrib><creatorcontrib>Mullikin, James C</creatorcontrib><creatorcontrib>Lander, Eric S</creatorcontrib><creatorcontrib>Lindblad-Toh, Kerstin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology Journals</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daly, Mark J</au><au>Wade, Claire M</au><au>Kulbokas, Edward J</au><au>Kirby, Andrew W</au><au>Zody, Michael C</au><au>Mullikin, James C</au><au>Lander, Eric S</au><au>Lindblad-Toh, Kerstin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mosaic structure of variation in the laboratory mouse genome</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2002-12-05</date><risdate>2002</risdate><volume>420</volume><issue>6915</issue><spage>574</spage><epage>578</epage><pages>574-578</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Most inbred laboratory mouse strains are known to have originated from a mixed but limited founder population in a few laboratories. However, the effect of this breeding history on patterns of genetic variation among these strains and the implications for their use are not well understood. Here we present an analysis of the fine structure of variation in the mouse genome, using single nucleotide polymorphisms (SNPs). When the recently assembled genome sequence from the C57BL/6J strain is aligned with sample sequence from other strains, we observe long segments of either extremely high (∼40 SNPs per 10 kb) or extremely low (∼0.5 SNPs per 10 kb) polymorphism rates. In all strain-to-strain comparisons examined, only one-third of the genome falls into long regions (averaging &gt;1 Mb) of a high SNP rate, consistent with estimated divergence rates between Mus musculus domesticus and either M. m. musculus or M. m. castaneus. These data suggest that the genomes of these inbred strains are mosaics with the vast majority of segments derived from domesticus and musculus sources. These observations have important implications for the design and interpretation of positional cloning experiments.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>12466852</pmid><doi>10.1038/nature01252</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2002-12, Vol.420 (6915), p.574-578
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_743507825
source Nature
subjects Albinism - genetics
Animals
Base Sequence
Cloning
Genetic diversity
Genetic Variation - genetics
Genome
Genomics
Haplotypes - genetics
Humanities and Social Sciences
Laboratory animals
letters-to-nature
Mice
Mice, Inbred C57BL
Mice, Inbred Strains - genetics
Monophenol Monooxygenase - genetics
multidisciplinary
Mutation - genetics
Phenotype
Polymorphism, Single Nucleotide - genetics
Recombination, Genetic - genetics
Rodents
Science
Science (multidisciplinary)
title The mosaic structure of variation in the laboratory mouse genome
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mosaic%20structure%20of%20variation%20in%20the%20laboratory%20mouse%20genome&rft.jtitle=Nature%20(London)&rft.au=Daly,%20Mark%20J&rft.date=2002-12-05&rft.volume=420&rft.issue=6915&rft.spage=574&rft.epage=578&rft.pages=574-578&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature01252&rft_dat=%3Cgale_proqu%3EA187569424%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c715t-4a19e8ca9f44939c869b42f5fcbe2e931cc568609c63677f7adcf2c6c949fec43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204487576&rft_id=info:pmid/12466852&rft_galeid=A187569424&rfr_iscdi=true