Loading…

The interaction of katabatic flow and mountain waves. Part II: Case study analysis and conceptual model

Via numerical analysis of detailed simulations of an early September 1993 case night, the authors develop a conceptual model of the interaction of katabatic flow in the nocturnal boundary layer with mountain waves (MKI). A companion paper (Part I) describes the synoptic and mesoscale observations of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the atmospheric sciences 2007-06, Vol.64 (6), p.1857-1879
Main Authors: POULOS, Gregory S, BOSSERT, James E, MCKEE, Thomas B, PIELKE, Roger A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Via numerical analysis of detailed simulations of an early September 1993 case night, the authors develop a conceptual model of the interaction of katabatic flow in the nocturnal boundary layer with mountain waves (MKI). A companion paper (Part I) describes the synoptic and mesoscale observations of the case night from the Atmospheric Studies in Complex Terrain (ASCOT) experiment and idealized numerical simulations that manifest components of the conceptual model of MKI presented herein. The reader is also referred to Part I for detailed scientific background and motivation. The interaction of these phenomena is complicated and nonlinear since the amplitude, wavelength, and vertical structure of the mountain-wave system developed by flow over the barrier owes some portion of its morphology to the evolving atmospheric stability in which the drainage flows develop. Simultaneously, katabatic flows are impacted by the topographically induced gravity wave evolution, which may include significantly changing wavelength, amplitude, flow magnitude, and wave breaking behavior. In addition to effects caused by turbulence (including scouring), perturbations to the leeside gravity wave structure at altitudes physically distant from the surface-based katabatic flow layer can be reflected in the katabatic flow by transmission through the atmospheric column. The simulations show that the evolution of atmospheric structure aloft can create local variability in the surface pressure gradient force governing katabatic flow. Variability is found to occur on two scales, on the meso- due to evolution of the mountain-wave system on the order of one hour, and on the microscale due to rapid wave evolution (short wavelength) and wave breaking-induced fluctuations. It is proposed that the MKI mechanism explains a portion of the variability in observational records of katabatic flow. [PUBLICATION ABSTRACT]
ISSN:0022-4928
1520-0469
DOI:10.1175/JAS3926.1