Loading…

Wax precipitation modeled with many mixed solid phases

The behavior of the Coutinho UNIQUAC model for solid wax phases has been examined. The model can produce as many mixed solid phases as the number of waxy components. In binary mixtures, the solid rich in the lighter component contains little of the heavier component but the second phase shows substa...

Full description

Saved in:
Bibliographic Details
Published in:AIChE journal 2005-01, Vol.51 (1), p.298-308
Main Authors: Heidemann, Robert A, Madsen, Jesper, Stenby, Erling H., Andersen, Simon I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4332-ecee2a3c3c3b0be810ec4372e535a795da7448f594eb94071e801960cec5ee683
cites cdi_FETCH-LOGICAL-c4332-ecee2a3c3c3b0be810ec4372e535a795da7448f594eb94071e801960cec5ee683
container_end_page 308
container_issue 1
container_start_page 298
container_title AIChE journal
container_volume 51
creator Heidemann, Robert A
Madsen, Jesper
Stenby, Erling H.
Andersen, Simon I.
description The behavior of the Coutinho UNIQUAC model for solid wax phases has been examined. The model can produce as many mixed solid phases as the number of waxy components. In binary mixtures, the solid rich in the lighter component contains little of the heavier component but the second phase shows substantial amounts of the lighter component dissolved in the heavier solid. Calculations have been performed taking into account the recrystallization of the solid alkanes into a second solid form. The Coutinho UNIQUAC model has been used to describe the lower‐temperature solid phases. The higher‐temperature mixed solid phase has been assumed to be either an ideal solution or to be described by Coutinho's Wilson activity coefficient model. This procedure accounts for more of the known behavior of mixed n‐alkane solids. Comparison is also made with results assuming that all of the solid phases, both high‐temperature and low‐temperature forms, are pure. Model calculations compare well with the data of Pauly et al. for C18 to C30 waxes precipitating from n‐decane solutions. © 2004 American Institute of Chemical Engineers AIChE J, 51: 290–308, 2005
doi_str_mv 10.1002/aic.10292
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743571567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743571567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4332-ecee2a3c3c3b0be810ec4372e535a795da7448f594eb94071e801960cec5ee683</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKsL_8EgiLgYm-dkspT6hKIVFJchTW9p6rxMprT996aODxAki-Tmfuck9yB0TPAFwZgOjLPxQBXdQT0iuEyFwmIX9TDGJI0XZB8dhLCIFZU57aHs1ayTxoN1jWtN6-oqKespFDBNVq6dJ6WpNknp1rEOdeGmSTM3AcIh2puZIsDR195HLzfXz8O7dPR4ez-8HKWWM0ZTsADUMBvXBE8gJxhiQ1IQTBipxNRIzvOZUBwmimNJIMdEZdiCFQBZzvrorPNtfP2-hNDq0gULRWEqqJdBS86EJCKTkTz5Qy7qpa_i5zRRigueKx6h8w6yvg7Bw0w33pXGbzTBepufjvnpz_wie_plaII1xcybyrrwK8gEywXbPjzouJUrYPO_ob68H347p53ChRbWPwrj33QcRAr9-nCrx3R09TQeE52zD7sGi74</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199454894</pqid></control><display><type>article</type><title>Wax precipitation modeled with many mixed solid phases</title><source>Wiley</source><creator>Heidemann, Robert A ; Madsen, Jesper ; Stenby, Erling H. ; Andersen, Simon I.</creator><creatorcontrib>Heidemann, Robert A ; Madsen, Jesper ; Stenby, Erling H. ; Andersen, Simon I.</creatorcontrib><description>The behavior of the Coutinho UNIQUAC model for solid wax phases has been examined. The model can produce as many mixed solid phases as the number of waxy components. In binary mixtures, the solid rich in the lighter component contains little of the heavier component but the second phase shows substantial amounts of the lighter component dissolved in the heavier solid. Calculations have been performed taking into account the recrystallization of the solid alkanes into a second solid form. The Coutinho UNIQUAC model has been used to describe the lower‐temperature solid phases. The higher‐temperature mixed solid phase has been assumed to be either an ideal solution or to be described by Coutinho's Wilson activity coefficient model. This procedure accounts for more of the known behavior of mixed n‐alkane solids. Comparison is also made with results assuming that all of the solid phases, both high‐temperature and low‐temperature forms, are pure. Model calculations compare well with the data of Pauly et al. for C18 to C30 waxes precipitating from n‐decane solutions. © 2004 American Institute of Chemical Engineers AIChE J, 51: 290–308, 2005</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.10292</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Chemical engineering ; Chemical precipitation ; Dissolution ; Exact sciences and technology ; Solid modeling</subject><ispartof>AIChE journal, 2005-01, Vol.51 (1), p.298-308</ispartof><rights>Copyright © 2004 American Institute of Chemical Engineers (AIChE)</rights><rights>2005 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Jan 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4332-ecee2a3c3c3b0be810ec4372e535a795da7448f594eb94071e801960cec5ee683</citedby><cites>FETCH-LOGICAL-c4332-ecee2a3c3c3b0be810ec4372e535a795da7448f594eb94071e801960cec5ee683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16538537$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Heidemann, Robert A</creatorcontrib><creatorcontrib>Madsen, Jesper</creatorcontrib><creatorcontrib>Stenby, Erling H.</creatorcontrib><creatorcontrib>Andersen, Simon I.</creatorcontrib><title>Wax precipitation modeled with many mixed solid phases</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>The behavior of the Coutinho UNIQUAC model for solid wax phases has been examined. The model can produce as many mixed solid phases as the number of waxy components. In binary mixtures, the solid rich in the lighter component contains little of the heavier component but the second phase shows substantial amounts of the lighter component dissolved in the heavier solid. Calculations have been performed taking into account the recrystallization of the solid alkanes into a second solid form. The Coutinho UNIQUAC model has been used to describe the lower‐temperature solid phases. The higher‐temperature mixed solid phase has been assumed to be either an ideal solution or to be described by Coutinho's Wilson activity coefficient model. This procedure accounts for more of the known behavior of mixed n‐alkane solids. Comparison is also made with results assuming that all of the solid phases, both high‐temperature and low‐temperature forms, are pure. Model calculations compare well with the data of Pauly et al. for C18 to C30 waxes precipitating from n‐decane solutions. © 2004 American Institute of Chemical Engineers AIChE J, 51: 290–308, 2005</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Chemical precipitation</subject><subject>Dissolution</subject><subject>Exact sciences and technology</subject><subject>Solid modeling</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKsL_8EgiLgYm-dkspT6hKIVFJchTW9p6rxMprT996aODxAki-Tmfuck9yB0TPAFwZgOjLPxQBXdQT0iuEyFwmIX9TDGJI0XZB8dhLCIFZU57aHs1ayTxoN1jWtN6-oqKespFDBNVq6dJ6WpNknp1rEOdeGmSTM3AcIh2puZIsDR195HLzfXz8O7dPR4ez-8HKWWM0ZTsADUMBvXBE8gJxhiQ1IQTBipxNRIzvOZUBwmimNJIMdEZdiCFQBZzvrorPNtfP2-hNDq0gULRWEqqJdBS86EJCKTkTz5Qy7qpa_i5zRRigueKx6h8w6yvg7Bw0w33pXGbzTBepufjvnpz_wie_plaII1xcybyrrwK8gEywXbPjzouJUrYPO_ob68H347p53ChRbWPwrj33QcRAr9-nCrx3R09TQeE52zD7sGi74</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Heidemann, Robert A</creator><creator>Madsen, Jesper</creator><creator>Stenby, Erling H.</creator><creator>Andersen, Simon I.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>200501</creationdate><title>Wax precipitation modeled with many mixed solid phases</title><author>Heidemann, Robert A ; Madsen, Jesper ; Stenby, Erling H. ; Andersen, Simon I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4332-ecee2a3c3c3b0be810ec4372e535a795da7448f594eb94071e801960cec5ee683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Chemical precipitation</topic><topic>Dissolution</topic><topic>Exact sciences and technology</topic><topic>Solid modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heidemann, Robert A</creatorcontrib><creatorcontrib>Madsen, Jesper</creatorcontrib><creatorcontrib>Stenby, Erling H.</creatorcontrib><creatorcontrib>Andersen, Simon I.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heidemann, Robert A</au><au>Madsen, Jesper</au><au>Stenby, Erling H.</au><au>Andersen, Simon I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wax precipitation modeled with many mixed solid phases</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2005-01</date><risdate>2005</risdate><volume>51</volume><issue>1</issue><spage>298</spage><epage>308</epage><pages>298-308</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>The behavior of the Coutinho UNIQUAC model for solid wax phases has been examined. The model can produce as many mixed solid phases as the number of waxy components. In binary mixtures, the solid rich in the lighter component contains little of the heavier component but the second phase shows substantial amounts of the lighter component dissolved in the heavier solid. Calculations have been performed taking into account the recrystallization of the solid alkanes into a second solid form. The Coutinho UNIQUAC model has been used to describe the lower‐temperature solid phases. The higher‐temperature mixed solid phase has been assumed to be either an ideal solution or to be described by Coutinho's Wilson activity coefficient model. This procedure accounts for more of the known behavior of mixed n‐alkane solids. Comparison is also made with results assuming that all of the solid phases, both high‐temperature and low‐temperature forms, are pure. Model calculations compare well with the data of Pauly et al. for C18 to C30 waxes precipitating from n‐decane solutions. © 2004 American Institute of Chemical Engineers AIChE J, 51: 290–308, 2005</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.10292</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2005-01, Vol.51 (1), p.298-308
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_743571567
source Wiley
subjects Applied sciences
Chemical engineering
Chemical precipitation
Dissolution
Exact sciences and technology
Solid modeling
title Wax precipitation modeled with many mixed solid phases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wax%20precipitation%20modeled%20with%20many%20mixed%20solid%20phases&rft.jtitle=AIChE%20journal&rft.au=Heidemann,%20Robert%20A&rft.date=2005-01&rft.volume=51&rft.issue=1&rft.spage=298&rft.epage=308&rft.pages=298-308&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.10292&rft_dat=%3Cproquest_cross%3E743571567%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4332-ecee2a3c3c3b0be810ec4372e535a795da7448f594eb94071e801960cec5ee683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=199454894&rft_id=info:pmid/&rfr_iscdi=true