Loading…
Exclusion of germ plasm proteins from somatic lineages by cullin-dependent degradation
In many animals, establishment of the germ line depends on segregation of a specialized cytoplasm, or 'germ plasm', to a small number of germline precursor cells during early embryogenesis. Germ plasm asymmetry involves targeting of RNAs and proteins to a specific region of the oocyte and/...
Saved in:
Published in: | Nature (London) 2003-08, Vol.424 (6949), p.685-689 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In many animals, establishment of the germ line depends on segregation of a specialized cytoplasm, or 'germ plasm', to a small number of germline precursor cells during early embryogenesis. Germ plasm asymmetry involves targeting of RNAs and proteins to a specific region of the oocyte and/or embryo. Here we demonstrate that germ plasm asymmetry also depends on degradation of germline proteins in non-germline (somatic) cells. We show that five CCCH finger proteins, components of the Caenorhabditis elegans germ plasm, are targeted for degradation by the novel CCCH-finger-binding protein ZIF-1. ZIF-1 is a SOCS-box protein that interacts with the E3 ubiquitin ligase subunit elongin C. Elongin C, the cullin CUL-2, the ring finger protein RBX-1 and the E2 ubiquitin conjugation enzyme UBC5 (also known as LET-70) are all required in vivo for CCCH finger protein degradation. Degradation is activated in somatic cells by the redundant CCCH finger proteins MEX-5 and MEX-6, which are counteracted in the germ line by the PAR-1 kinase. We propose that segregation of the germ plasm involves both stabilization of germline proteins in the germ line and cullin-dependent degradation in the soma. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/nature01887 |