Loading…
Fabrication of polymer microstructures for MEMS: sacrificial layer micromolding and patterned substrate micromolding
Two soft lithography based fabrication techniques are employed for fabricating mechanically independent, freely suspended polymer microstructure from poly(n-propyl methacrylate) (PPMA), poly(methyl methacrylate) (PMMA), and polystyrene. Both methods involve a micromolding process followed by thermal...
Saved in:
Published in: | Biomedical microdevices 2007-12, Vol.9 (6), p.815-821 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two soft lithography based fabrication techniques are employed for fabricating mechanically independent, freely suspended polymer microstructure from poly(n-propyl methacrylate) (PPMA), poly(methyl methacrylate) (PMMA), and polystyrene. Both methods involve a micromolding process followed by thermal bonding to the substrate. The first method, sacrificial layer micromolding, uses a water soluble sacrificial layer, allowing functional structures to be released by immersion in water. The second method, patterned substrate micromolding, uses a permanent substrate patterned via photolithography. Functional regions of the polymer MEMS are suspended over the voids in the photoresist pattern. The processes have been applied to the fabrication of polymer microstructures with a variety of geometries for specific applications. Devices have included microcantilevers, beams, and other more complicated microstructures. The thermal molding process is conceivably applicable to the fabrication of microstructures from a wide variety of thermoplastic polymers, allowing material selection to be tailored based on application. |
---|---|
ISSN: | 1387-2176 1572-8781 |
DOI: | 10.1007/s10544-007-9094-y |