Loading…
Kolmogorov-Loveland Stochasticity and Kolmogorov Complexity
Merkle et al. (Ann. Pure Appl. Logic 138(1–3):183–210, 2006 ) showed that all Kolmogorov-Loveland stochastic infinite binary sequences have constructive Hausdorff dimension 1. In this paper, we go even further, showing that from an infinite sequence of dimension less than (ℋ being the Shannon entrop...
Saved in:
Published in: | Theory of computing systems 2010-04, Vol.46 (3), p.598-617 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-e70e0a614731400dbb1531b14d3569bb62652cef59a2110bd53735dac276e39f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-e70e0a614731400dbb1531b14d3569bb62652cef59a2110bd53735dac276e39f3 |
container_end_page | 617 |
container_issue | 3 |
container_start_page | 598 |
container_title | Theory of computing systems |
container_volume | 46 |
creator | Bienvenu, Laurent |
description | Merkle et al. (Ann. Pure Appl. Logic 138(1–3):183–210,
2006
) showed that all Kolmogorov-Loveland stochastic infinite binary sequences have constructive Hausdorff dimension 1. In this paper, we go even further, showing that from an infinite sequence of dimension less than
(ℋ being the Shannon entropy function) one can extract by an effective selection rule a biased subsequence with bias at least
δ
. We also prove an analogous result for finite strings. |
doi_str_mv | 10.1007/s00224-009-9232-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743595144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1963694261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-e70e0a614731400dbb1531b14d3569bb62652cef59a2110bd53735dac276e39f3</originalsourceid><addsrcrecordid>eNp1kMFOwzAMhiMEEmPwANwmLpwCTpw0RJzQxAAxiQNwjtI2HZ3aZSTdxN6elCJNQuJky_782_4JOWdwxQDUdQTgXFAATTVHTsUBGTGBSEFoOPzJUxElHJOTGJcAgDcAI3L77JvWL3zwWzr3W9fYVTl57XzxYWNXF3W3m_SVPTWZ-nbduK_UOSVHlW2iO_uNY_I-u3-bPtL5y8PT9G5OCxSqo06BA5sxoZAJgDLPmUSWM1GizHSeZzyTvHCV1JYzBnkpUaEsbcFV5lBXOCaXg-46-M-Ni51p61i4Jt3q_CYalf7SkgmRyIs_5NJvwiodZzgqnhZplSA2QEXwMQZXmXWoWxt2hoHpzTSDmSaZaXozTS_Mh5mY2NXChb3w_0Pf09B1zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237226597</pqid></control><display><type>article</type><title>Kolmogorov-Loveland Stochasticity and Kolmogorov Complexity</title><source>ABI/INFORM Global</source><source>Springer Link</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Bienvenu, Laurent</creator><creatorcontrib>Bienvenu, Laurent</creatorcontrib><description>Merkle et al. (Ann. Pure Appl. Logic 138(1–3):183–210,
2006
) showed that all Kolmogorov-Loveland stochastic infinite binary sequences have constructive Hausdorff dimension 1. In this paper, we go even further, showing that from an infinite sequence of dimension less than
(ℋ being the Shannon entropy function) one can extract by an effective selection rule a biased subsequence with bias at least
δ
. We also prove an analogous result for finite strings.</description><identifier>ISSN: 1432-4350</identifier><identifier>EISSN: 1433-0490</identifier><identifier>DOI: 10.1007/s00224-009-9232-4</identifier><identifier>CODEN: TCSYFI</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Algorithms ; Bias ; Binary system ; Codes ; Computer Science ; Mathematical analysis ; Random variables ; Stochastic models ; Studies ; Theory of Computation</subject><ispartof>Theory of computing systems, 2010-04, Vol.46 (3), p.598-617</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-e70e0a614731400dbb1531b14d3569bb62652cef59a2110bd53735dac276e39f3</citedby><cites>FETCH-LOGICAL-c347t-e70e0a614731400dbb1531b14d3569bb62652cef59a2110bd53735dac276e39f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/237226597/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/237226597?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74767</link.rule.ids></links><search><creatorcontrib>Bienvenu, Laurent</creatorcontrib><title>Kolmogorov-Loveland Stochasticity and Kolmogorov Complexity</title><title>Theory of computing systems</title><addtitle>Theory Comput Syst</addtitle><description>Merkle et al. (Ann. Pure Appl. Logic 138(1–3):183–210,
2006
) showed that all Kolmogorov-Loveland stochastic infinite binary sequences have constructive Hausdorff dimension 1. In this paper, we go even further, showing that from an infinite sequence of dimension less than
(ℋ being the Shannon entropy function) one can extract by an effective selection rule a biased subsequence with bias at least
δ
. We also prove an analogous result for finite strings.</description><subject>Algorithms</subject><subject>Bias</subject><subject>Binary system</subject><subject>Codes</subject><subject>Computer Science</subject><subject>Mathematical analysis</subject><subject>Random variables</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Theory of Computation</subject><issn>1432-4350</issn><issn>1433-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kMFOwzAMhiMEEmPwANwmLpwCTpw0RJzQxAAxiQNwjtI2HZ3aZSTdxN6elCJNQuJky_782_4JOWdwxQDUdQTgXFAATTVHTsUBGTGBSEFoOPzJUxElHJOTGJcAgDcAI3L77JvWL3zwWzr3W9fYVTl57XzxYWNXF3W3m_SVPTWZ-nbduK_UOSVHlW2iO_uNY_I-u3-bPtL5y8PT9G5OCxSqo06BA5sxoZAJgDLPmUSWM1GizHSeZzyTvHCV1JYzBnkpUaEsbcFV5lBXOCaXg-46-M-Ni51p61i4Jt3q_CYalf7SkgmRyIs_5NJvwiodZzgqnhZplSA2QEXwMQZXmXWoWxt2hoHpzTSDmSaZaXozTS_Mh5mY2NXChb3w_0Pf09B1zg</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Bienvenu, Laurent</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20100401</creationdate><title>Kolmogorov-Loveland Stochasticity and Kolmogorov Complexity</title><author>Bienvenu, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-e70e0a614731400dbb1531b14d3569bb62652cef59a2110bd53735dac276e39f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Bias</topic><topic>Binary system</topic><topic>Codes</topic><topic>Computer Science</topic><topic>Mathematical analysis</topic><topic>Random variables</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bienvenu, Laurent</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Theory of computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bienvenu, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kolmogorov-Loveland Stochasticity and Kolmogorov Complexity</atitle><jtitle>Theory of computing systems</jtitle><stitle>Theory Comput Syst</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>46</volume><issue>3</issue><spage>598</spage><epage>617</epage><pages>598-617</pages><issn>1432-4350</issn><eissn>1433-0490</eissn><coden>TCSYFI</coden><abstract>Merkle et al. (Ann. Pure Appl. Logic 138(1–3):183–210,
2006
) showed that all Kolmogorov-Loveland stochastic infinite binary sequences have constructive Hausdorff dimension 1. In this paper, we go even further, showing that from an infinite sequence of dimension less than
(ℋ being the Shannon entropy function) one can extract by an effective selection rule a biased subsequence with bias at least
δ
. We also prove an analogous result for finite strings.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><doi>10.1007/s00224-009-9232-4</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-4350 |
ispartof | Theory of computing systems, 2010-04, Vol.46 (3), p.598-617 |
issn | 1432-4350 1433-0490 |
language | eng |
recordid | cdi_proquest_miscellaneous_743595144 |
source | ABI/INFORM Global; Springer Link; BSC - Ebsco (Business Source Ultimate) |
subjects | Algorithms Bias Binary system Codes Computer Science Mathematical analysis Random variables Stochastic models Studies Theory of Computation |
title | Kolmogorov-Loveland Stochasticity and Kolmogorov Complexity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A58%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kolmogorov-Loveland%20Stochasticity%20and%20Kolmogorov%20Complexity&rft.jtitle=Theory%20of%20computing%20systems&rft.au=Bienvenu,%20Laurent&rft.date=2010-04-01&rft.volume=46&rft.issue=3&rft.spage=598&rft.epage=617&rft.pages=598-617&rft.issn=1432-4350&rft.eissn=1433-0490&rft.coden=TCSYFI&rft_id=info:doi/10.1007/s00224-009-9232-4&rft_dat=%3Cproquest_cross%3E1963694261%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-e70e0a614731400dbb1531b14d3569bb62652cef59a2110bd53735dac276e39f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=237226597&rft_id=info:pmid/&rfr_iscdi=true |