Loading…

A local rigidity theorem for minimal surfaces in Minkowski 3-space of Randers type

This paper considers minimal surfaces in and prove that if a connected surface M in is minimal with respect to both the Busemann-Hausdorff volume form and the Holmes-Thompson volume form, then up to a parallel translation of , M is either a piece of plane or a piece of helicoid which is generated by...

Full description

Saved in:
Bibliographic Details
Published in:Annals of global analysis and geometry 2007-06, Vol.31 (4), p.375-384
Main Author: Wu, Bing Ye
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c332t-c292cfeb280ab190be8f2d25b442a92875f7526b64796fdd0c86d5b7e1f4b82f3
cites cdi_FETCH-LOGICAL-c332t-c292cfeb280ab190be8f2d25b442a92875f7526b64796fdd0c86d5b7e1f4b82f3
container_end_page 384
container_issue 4
container_start_page 375
container_title Annals of global analysis and geometry
container_volume 31
creator Wu, Bing Ye
description This paper considers minimal surfaces in and prove that if a connected surface M in is minimal with respect to both the Busemann-Hausdorff volume form and the Holmes-Thompson volume form, then up to a parallel translation of , M is either a piece of plane or a piece of helicoid which is generated by lines screwing about the x 3-axis.
doi_str_mv 10.1007/s10455-006-9046-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743598585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665369229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-c292cfeb280ab190be8f2d25b442a92875f7526b64796fdd0c86d5b7e1f4b82f3</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoMouK7-AG9BD56qk-_2uCx-wYqwKHgL_Ug0u21TkxbZf29kPQmehpn3YRjmQeicwDUBUDeRABciA5BZAVxm_ADNiFA0dRIO0Qwoo5kC_naMTmLcAIBghMzQeoFbX5ctDu7dNW7c4fHD-GA6bH3Anetdl8I4BVvWJmLX4yfXb_1X3DrMsjikKfYWr8u-MSHicTeYU3Rkyzaas986R693ty_Lh2z1fP-4XKyymjE6ZjUtaG1NRXMoK1JAZXJLGyoqzmlZ0FwJqwSVleSqkLZpoM5lIypliOVVTi2bo6v93iH4z8nEUXcu1qZty974KWrFmShykYtEXv4hN34KfTpOUykFkwWlRaIu_qUIZ4rkSiaI7KE6-BiDsXoI6UVhpwnoHxN6b0InE_rHhObsGw8VeiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214371876</pqid></control><display><type>article</type><title>A local rigidity theorem for minimal surfaces in Minkowski 3-space of Randers type</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Wu, Bing Ye</creator><creatorcontrib>Wu, Bing Ye</creatorcontrib><description>This paper considers minimal surfaces in and prove that if a connected surface M in is minimal with respect to both the Busemann-Hausdorff volume form and the Holmes-Thompson volume form, then up to a parallel translation of , M is either a piece of plane or a piece of helicoid which is generated by lines screwing about the x 3-axis.</description><identifier>ISSN: 0232-704X</identifier><identifier>EISSN: 1572-9060</identifier><identifier>DOI: 10.1007/s10455-006-9046-4</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Euclidean space ; Geometry ; Mathematical models ; Minimal surfaces ; Minkowski space ; Studies ; Theory</subject><ispartof>Annals of global analysis and geometry, 2007-06, Vol.31 (4), p.375-384</ispartof><rights>Springer Science + Business Media B.V. 2007</rights><rights>Springer Science + Business Media B.V. 2006.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-c292cfeb280ab190be8f2d25b442a92875f7526b64796fdd0c86d5b7e1f4b82f3</citedby><cites>FETCH-LOGICAL-c332t-c292cfeb280ab190be8f2d25b442a92875f7526b64796fdd0c86d5b7e1f4b82f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2665369229/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2665369229?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,11669,27905,27906,36041,36042,44344,74644</link.rule.ids></links><search><creatorcontrib>Wu, Bing Ye</creatorcontrib><title>A local rigidity theorem for minimal surfaces in Minkowski 3-space of Randers type</title><title>Annals of global analysis and geometry</title><description>This paper considers minimal surfaces in and prove that if a connected surface M in is minimal with respect to both the Busemann-Hausdorff volume form and the Holmes-Thompson volume form, then up to a parallel translation of , M is either a piece of plane or a piece of helicoid which is generated by lines screwing about the x 3-axis.</description><subject>Euclidean space</subject><subject>Geometry</subject><subject>Mathematical models</subject><subject>Minimal surfaces</subject><subject>Minkowski space</subject><subject>Studies</subject><subject>Theory</subject><issn>0232-704X</issn><issn>1572-9060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kU1LxDAQhoMouK7-AG9BD56qk-_2uCx-wYqwKHgL_Ug0u21TkxbZf29kPQmehpn3YRjmQeicwDUBUDeRABciA5BZAVxm_ADNiFA0dRIO0Qwoo5kC_naMTmLcAIBghMzQeoFbX5ctDu7dNW7c4fHD-GA6bH3Anetdl8I4BVvWJmLX4yfXb_1X3DrMsjikKfYWr8u-MSHicTeYU3Rkyzaas986R693ty_Lh2z1fP-4XKyymjE6ZjUtaG1NRXMoK1JAZXJLGyoqzmlZ0FwJqwSVleSqkLZpoM5lIypliOVVTi2bo6v93iH4z8nEUXcu1qZty974KWrFmShykYtEXv4hN34KfTpOUykFkwWlRaIu_qUIZ4rkSiaI7KE6-BiDsXoI6UVhpwnoHxN6b0InE_rHhObsGw8VeiU</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Wu, Bing Ye</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>PRINS</scope></search><sort><creationdate>20070601</creationdate><title>A local rigidity theorem for minimal surfaces in Minkowski 3-space of Randers type</title><author>Wu, Bing Ye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-c292cfeb280ab190be8f2d25b442a92875f7526b64796fdd0c86d5b7e1f4b82f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Euclidean space</topic><topic>Geometry</topic><topic>Mathematical models</topic><topic>Minimal surfaces</topic><topic>Minkowski space</topic><topic>Studies</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Bing Ye</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>ProQuest Central China</collection><jtitle>Annals of global analysis and geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Bing Ye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A local rigidity theorem for minimal surfaces in Minkowski 3-space of Randers type</atitle><jtitle>Annals of global analysis and geometry</jtitle><date>2007-06-01</date><risdate>2007</risdate><volume>31</volume><issue>4</issue><spage>375</spage><epage>384</epage><pages>375-384</pages><issn>0232-704X</issn><eissn>1572-9060</eissn><abstract>This paper considers minimal surfaces in and prove that if a connected surface M in is minimal with respect to both the Busemann-Hausdorff volume form and the Holmes-Thompson volume form, then up to a parallel translation of , M is either a piece of plane or a piece of helicoid which is generated by lines screwing about the x 3-axis.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10455-006-9046-4</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0232-704X
ispartof Annals of global analysis and geometry, 2007-06, Vol.31 (4), p.375-384
issn 0232-704X
1572-9060
language eng
recordid cdi_proquest_miscellaneous_743598585
source ABI/INFORM global; Springer Nature
subjects Euclidean space
Geometry
Mathematical models
Minimal surfaces
Minkowski space
Studies
Theory
title A local rigidity theorem for minimal surfaces in Minkowski 3-space of Randers type
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20local%20rigidity%20theorem%20for%20minimal%20surfaces%20in%20Minkowski%203-space%20of%20Randers%20type&rft.jtitle=Annals%20of%20global%20analysis%20and%20geometry&rft.au=Wu,%20Bing%20Ye&rft.date=2007-06-01&rft.volume=31&rft.issue=4&rft.spage=375&rft.epage=384&rft.pages=375-384&rft.issn=0232-704X&rft.eissn=1572-9060&rft_id=info:doi/10.1007/s10455-006-9046-4&rft_dat=%3Cproquest_cross%3E2665369229%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-c292cfeb280ab190be8f2d25b442a92875f7526b64796fdd0c86d5b7e1f4b82f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=214371876&rft_id=info:pmid/&rfr_iscdi=true