Loading…

Modeling and Experimental Characterization of an Untethered Magnetic Micro-Robot

Here we present the control, performance and modeling of an untethered electromagnetically actuated magnetic micro-robot. The microrobot, which is composed of neodymium—iron—boron with dimensions 250 μm 1 130 μm 1 10 μm , is actuated by a system of six macro-scale electromagnets. Periodically varyin...

Full description

Saved in:
Bibliographic Details
Published in:The International journal of robotics research 2009-08, Vol.28 (8), p.1077-1094
Main Authors: Pawashe, Chytra, Floyd, Steven, Sitti, Metin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Here we present the control, performance and modeling of an untethered electromagnetically actuated magnetic micro-robot. The microrobot, which is composed of neodymium—iron—boron with dimensions 250 μm 1 130 μm 1 10 μm , is actuated by a system of six macro-scale electromagnets. Periodically varying magnetic fields are used to impose magnetic torques, which induce stick—slip motion in the micro-robot. These magnetic forces and torques are incorporated into a comprehensive dynamic model, which captures the behavior of the micro-robot. By pivoting the micro-robot about an edge, non-planar obstacles with characteristic sizes comparable to the robot length can be surmounted. Actuation is demonstrated on several substrates with different surface properties, in a fluid environment, and in a vacuum. Observed micro-robot translation speeds can exceed 10 mm s-1 .
ISSN:0278-3649
1741-3176
DOI:10.1177/0278364909341413