Loading…
Analytical expressions for stress and displacement fields in viscoelastic axisymmetric plane problem involving time-dependent boundary regions
An analytical solution is developed in this paper for viscoelastic axisymmetric plane problems under stress or displacement boundary condition involving time-dependent boundary regions using the Laplace transform. The explicit expressions are given for the radial and circumferential stresses under s...
Saved in:
Published in: | Acta mechanica 2010-03, Vol.210 (3-4), p.315-330 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c416t-72abedbe38e1cc820e29ba2fa8313f4e3bbb9c287f70db9521978256d2c4a7903 |
---|---|
cites | cdi_FETCH-LOGICAL-c416t-72abedbe38e1cc820e29ba2fa8313f4e3bbb9c287f70db9521978256d2c4a7903 |
container_end_page | 330 |
container_issue | 3-4 |
container_start_page | 315 |
container_title | Acta mechanica |
container_volume | 210 |
creator | Wang, H. N. Nie, G. H. |
description | An analytical solution is developed in this paper for viscoelastic axisymmetric plane problems under stress or displacement boundary condition involving time-dependent boundary regions using the Laplace transform. The explicit expressions are given for the radial and circumferential stresses under stress boundary condition and the radial displacement under displacement boundary condition. The results indicate that the two in-plane stress components and the displacement under corresponding boundary conditions have no relation with material constants. The general form of solutions for the remaining displacement or stress field is expressed by the inverse Laplace transform concerning two relaxation moduli. As an application to deep excavation of a circular tunnel or finite void growth, explicit solutions for the analysis of a deforming circular hole in both infinite and finite planes are given taking into account the rheological characteristics of the rock mass characterized by a Boltzmann or Maxwell viscoelastic model. Numerical examples are given to illustrate the displacement and stress response. The method proposed in this paper can be used for analysis of earth excavation and finite void growth. |
doi_str_mv | 10.1007/s00707-009-0208-x |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743607153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A355775927</galeid><sourcerecordid>A355775927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-72abedbe38e1cc820e29ba2fa8313f4e3bbb9c287f70db9521978256d2c4a7903</originalsourceid><addsrcrecordid>eNp1UV2L1DAUDaLgOPoDfAuC-NQ1H23TPA6LqwsLvuhzSNPbIUua1NzOMPMn_M2mdFEQlkDCTc459-QeQt5zdsMZU5-xbExVjOmKCdZVlxdkx1uuq1ZL9ZLsGGO8arRir8kbxMdSCVXzHfl9iDZcF-9soHCZMyD6FJGOKVNc1pLaONDB4xysgwniQkcPYUDqIz17dAmCxSJA7cXjdZpgyaUo6Ah0zqkPMBXoOYWzj0e6-AmqAWaIwyrVp1McbL7SDMe171vyarQB4d3TuSc_7778uP1WPXz_en97eKhczdulUsL2MPQgO-DOdYKB0L0Vo-0kl2MNsu977USnRsWGXjeCa9WJph2Eq63STO7Jp023OPx1AlzMVL4CYXWdTmhULVumeCML8sN_yMd0ymVoaISQLW-Y7AroZgMdbQDj45iWbF1ZA0zepQijL_cH2TRKNVqoQuAbweWEmGE0c_ZTGYThzKyBmi1QUwI1a6DmUjgfn5xYLHGN2Ubn8S9RiLrtVDG-J2LDYXmKR8j_HD8v_gf-7LSH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223615038</pqid></control><display><type>article</type><title>Analytical expressions for stress and displacement fields in viscoelastic axisymmetric plane problem involving time-dependent boundary regions</title><source>Springer Link</source><creator>Wang, H. N. ; Nie, G. H.</creator><creatorcontrib>Wang, H. N. ; Nie, G. H.</creatorcontrib><description>An analytical solution is developed in this paper for viscoelastic axisymmetric plane problems under stress or displacement boundary condition involving time-dependent boundary regions using the Laplace transform. The explicit expressions are given for the radial and circumferential stresses under stress boundary condition and the radial displacement under displacement boundary condition. The results indicate that the two in-plane stress components and the displacement under corresponding boundary conditions have no relation with material constants. The general form of solutions for the remaining displacement or stress field is expressed by the inverse Laplace transform concerning two relaxation moduli. As an application to deep excavation of a circular tunnel or finite void growth, explicit solutions for the analysis of a deforming circular hole in both infinite and finite planes are given taking into account the rheological characteristics of the rock mass characterized by a Boltzmann or Maxwell viscoelastic model. Numerical examples are given to illustrate the displacement and stress response. The method proposed in this paper can be used for analysis of earth excavation and finite void growth.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-009-0208-x</identifier><identifier>CODEN: AMHCAP</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Classical and Continuum Physics ; Control ; Dynamical Systems ; Elasticity ; Engineering ; Engineering Thermodynamics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Heat and Mass Transfer ; Inelasticity (thermoplasticity, viscoplasticity...) ; Mathematics ; Mechanical engineering ; Physics ; Rheology ; Solid Mechanics ; Static elasticity (thermoelasticity...) ; Stress analysis ; Structural and continuum mechanics ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2010-03, Vol.210 (3-4), p.315-330</ispartof><rights>Springer-Verlag 2009</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2010 Springer</rights><rights>Springer-Verlag 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-72abedbe38e1cc820e29ba2fa8313f4e3bbb9c287f70db9521978256d2c4a7903</citedby><cites>FETCH-LOGICAL-c416t-72abedbe38e1cc820e29ba2fa8313f4e3bbb9c287f70db9521978256d2c4a7903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22468774$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, H. N.</creatorcontrib><creatorcontrib>Nie, G. H.</creatorcontrib><title>Analytical expressions for stress and displacement fields in viscoelastic axisymmetric plane problem involving time-dependent boundary regions</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>An analytical solution is developed in this paper for viscoelastic axisymmetric plane problems under stress or displacement boundary condition involving time-dependent boundary regions using the Laplace transform. The explicit expressions are given for the radial and circumferential stresses under stress boundary condition and the radial displacement under displacement boundary condition. The results indicate that the two in-plane stress components and the displacement under corresponding boundary conditions have no relation with material constants. The general form of solutions for the remaining displacement or stress field is expressed by the inverse Laplace transform concerning two relaxation moduli. As an application to deep excavation of a circular tunnel or finite void growth, explicit solutions for the analysis of a deforming circular hole in both infinite and finite planes are given taking into account the rheological characteristics of the rock mass characterized by a Boltzmann or Maxwell viscoelastic model. Numerical examples are given to illustrate the displacement and stress response. The method proposed in this paper can be used for analysis of earth excavation and finite void growth.</description><subject>Classical and Continuum Physics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Elasticity</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat and Mass Transfer</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Mathematics</subject><subject>Mechanical engineering</subject><subject>Physics</subject><subject>Rheology</subject><subject>Solid Mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Stress analysis</subject><subject>Structural and continuum mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1UV2L1DAUDaLgOPoDfAuC-NQ1H23TPA6LqwsLvuhzSNPbIUua1NzOMPMn_M2mdFEQlkDCTc459-QeQt5zdsMZU5-xbExVjOmKCdZVlxdkx1uuq1ZL9ZLsGGO8arRir8kbxMdSCVXzHfl9iDZcF-9soHCZMyD6FJGOKVNc1pLaONDB4xysgwniQkcPYUDqIz17dAmCxSJA7cXjdZpgyaUo6Ah0zqkPMBXoOYWzj0e6-AmqAWaIwyrVp1McbL7SDMe171vyarQB4d3TuSc_7778uP1WPXz_en97eKhczdulUsL2MPQgO-DOdYKB0L0Vo-0kl2MNsu977USnRsWGXjeCa9WJph2Eq63STO7Jp023OPx1AlzMVL4CYXWdTmhULVumeCML8sN_yMd0ymVoaISQLW-Y7AroZgMdbQDj45iWbF1ZA0zepQijL_cH2TRKNVqoQuAbweWEmGE0c_ZTGYThzKyBmi1QUwI1a6DmUjgfn5xYLHGN2Ubn8S9RiLrtVDG-J2LDYXmKR8j_HD8v_gf-7LSH</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Wang, H. N.</creator><creator>Nie, G. H.</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20100301</creationdate><title>Analytical expressions for stress and displacement fields in viscoelastic axisymmetric plane problem involving time-dependent boundary regions</title><author>Wang, H. N. ; Nie, G. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-72abedbe38e1cc820e29ba2fa8313f4e3bbb9c287f70db9521978256d2c4a7903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Classical and Continuum Physics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Elasticity</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat and Mass Transfer</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Mathematics</topic><topic>Mechanical engineering</topic><topic>Physics</topic><topic>Rheology</topic><topic>Solid Mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Stress analysis</topic><topic>Structural and continuum mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, H. N.</creatorcontrib><creatorcontrib>Nie, G. H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, H. N.</au><au>Nie, G. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical expressions for stress and displacement fields in viscoelastic axisymmetric plane problem involving time-dependent boundary regions</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2010-03-01</date><risdate>2010</risdate><volume>210</volume><issue>3-4</issue><spage>315</spage><epage>330</epage><pages>315-330</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><coden>AMHCAP</coden><abstract>An analytical solution is developed in this paper for viscoelastic axisymmetric plane problems under stress or displacement boundary condition involving time-dependent boundary regions using the Laplace transform. The explicit expressions are given for the radial and circumferential stresses under stress boundary condition and the radial displacement under displacement boundary condition. The results indicate that the two in-plane stress components and the displacement under corresponding boundary conditions have no relation with material constants. The general form of solutions for the remaining displacement or stress field is expressed by the inverse Laplace transform concerning two relaxation moduli. As an application to deep excavation of a circular tunnel or finite void growth, explicit solutions for the analysis of a deforming circular hole in both infinite and finite planes are given taking into account the rheological characteristics of the rock mass characterized by a Boltzmann or Maxwell viscoelastic model. Numerical examples are given to illustrate the displacement and stress response. The method proposed in this paper can be used for analysis of earth excavation and finite void growth.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-009-0208-x</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 2010-03, Vol.210 (3-4), p.315-330 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_proquest_miscellaneous_743607153 |
source | Springer Link |
subjects | Classical and Continuum Physics Control Dynamical Systems Elasticity Engineering Engineering Thermodynamics Exact sciences and technology Fundamental areas of phenomenology (including applications) Heat and Mass Transfer Inelasticity (thermoplasticity, viscoplasticity...) Mathematics Mechanical engineering Physics Rheology Solid Mechanics Static elasticity (thermoelasticity...) Stress analysis Structural and continuum mechanics Theoretical and Applied Mechanics Vibration |
title | Analytical expressions for stress and displacement fields in viscoelastic axisymmetric plane problem involving time-dependent boundary regions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A21%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20expressions%20for%20stress%20and%20displacement%20fields%20in%20viscoelastic%20axisymmetric%20plane%20problem%20involving%20time-dependent%20boundary%20regions&rft.jtitle=Acta%20mechanica&rft.au=Wang,%20H.%20N.&rft.date=2010-03-01&rft.volume=210&rft.issue=3-4&rft.spage=315&rft.epage=330&rft.pages=315-330&rft.issn=0001-5970&rft.eissn=1619-6937&rft.coden=AMHCAP&rft_id=info:doi/10.1007/s00707-009-0208-x&rft_dat=%3Cgale_proqu%3EA355775927%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-72abedbe38e1cc820e29ba2fa8313f4e3bbb9c287f70db9521978256d2c4a7903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=223615038&rft_id=info:pmid/&rft_galeid=A355775927&rfr_iscdi=true |