Loading…

Stator Interturn Fault Detection of Synchronous Machines Using Field Current and Rotor Search-Coil Voltage Signature Analysis

Our recent observations suggested that harmonics in the field current are very promising to detect stator interturn faults in synchronous machines. So far, an increase in some of the even harmonics in the field current has been reported to detect such faults. However, no explanation has been provide...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industry applications 2009-05, Vol.45 (3), p.911-920
Main Authors: Neti, P., Nandi, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Our recent observations suggested that harmonics in the field current are very promising to detect stator interturn faults in synchronous machines. So far, an increase in some of the even harmonics in the field current has been reported to detect such faults. However, no explanation has been provided for the cause of these harmonics. Moreover, the even harmonics can significantly increase with supply unbalance as well as time harmonics, which can lead to a serious confusion. Hence, in this study, an in-depth investigation was conducted to determine the origin of various harmonic components in the field current and their feasibility to detect stator faults. It was found that, owing to structural asymmetries of the field winding, some of these components clearly increased with stator interturn fault. The findings are helpful to detect faults involving few turns without ambiguity, in spite of the presence of supply unbalance and time harmonics. Both simulation and experimental results are presented in this paper. The diagnosis results have also been verified using a rotor-mounted search coil, which can also be used to detect even a one-turn stator fault very effectively.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2009.2018905