Loading…

Brownian Ratchets: Molecular Separations in Lipid Bilayers Supported on Patterned Arrays

Brownian ratchets use a time-varying asymmetric potential that can be applied to separate diffusing particles or molecules. A new type of Brownian ratchet, a geometrical Brownian ratchet, has been realized. Charged, fluorescently labeled phospholipids in a two-dimensional fluid bilayer were driven i...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 1999-08, Vol.285 (5430), p.1046-1048
Main Authors: van Oudenaarden, Alexander, Boxer, Steven G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Brownian ratchets use a time-varying asymmetric potential that can be applied to separate diffusing particles or molecules. A new type of Brownian ratchet, a geometrical Brownian ratchet, has been realized. Charged, fluorescently labeled phospholipids in a two-dimensional fluid bilayer were driven in one direction by an electric field through a two-dimensional periodic array of asymmetric barriers to lateral diffusion fabricated from titanium oxide on silica. Diffusion spreads the phospholipid molecules in the orthogonal direction, and the asymmetric barriers rectify the Brownian motion, causing a directional transport of molecules. The geometrical ratchet can be used as a continuous molecular sieve to separate mixtures of membrane-associated molecules that differ in electrophoretic mobility and diffusion coefficient.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.285.5430.1046