Loading…
Differentiability of the value function of nonclassical optimal growth models
We consider an optimal growth (multi-sector) model with nonconvex technology. Using the Clarke results on generalized gradients, we prove that the value function has left and right derivatives with respect to the initial capital stock, without requiring supermodularity assumptions.
Saved in:
Published in: | Journal of optimization theory and applications 1998-06, Vol.97 (3), p.591-604 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-ceb632178b71d6c97b58d9202beba9b1177c9354fe8c7aaba37b0836dc9b0a03 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-ceb632178b71d6c97b58d9202beba9b1177c9354fe8c7aaba37b0836dc9b0a03 |
container_end_page | 604 |
container_issue | 3 |
container_start_page | 591 |
container_title | Journal of optimization theory and applications |
container_volume | 97 |
creator | ASKRI, K LE VAN, C |
description | We consider an optimal growth (multi-sector) model with nonconvex technology. Using the Clarke results on generalized gradients, we prove that the value function has left and right derivatives with respect to the initial capital stock, without requiring supermodularity assumptions. |
doi_str_mv | 10.1023/A:1022690009338 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743656445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743656445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-ceb632178b71d6c97b58d9202beba9b1177c9354fe8c7aaba37b0836dc9b0a03</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoWKtrt4MIrsYmuTN5uCv1CRU33YckzdiU6aQmM0r_vSkVQVcH7v3OfRyELgm-JZjCZHqXhTKJMZYA4giNSM2hpIKLYzTCuVcCBXmKzlJa7yHBqxF6vfdN46Lreq-Nb32_K0JT9CtXfOp2cEUzdLb3odtXu9DZVqfkrW6LsO39Jut7DF_9qtiEpWvTOTppdJvcxY-O0eLxYTF7LudvTy-z6by0QHlfWmcYUMKF4WTJrOSmFktJMTXOaGkI4dxKqKvGCcu1Nhq4wQLY0kqDNYYxujmM3cbwMbjUq41P1rWt7lwYkuIVsJpVVZ3Jq3_kOgyxy7cpIhkjICrI0OQA2RhSiq5R25h_iztFsNpnq6bqT7bZcf0zVqccRhN1Z336tVHKIe-Hb_ipeME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196613843</pqid></control><display><type>article</type><title>Differentiability of the value function of nonclassical optimal growth models</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>ASKRI, K ; LE VAN, C</creator><creatorcontrib>ASKRI, K ; LE VAN, C</creatorcontrib><description>We consider an optimal growth (multi-sector) model with nonconvex technology. Using the Clarke results on generalized gradients, we prove that the value function has left and right derivatives with respect to the initial capital stock, without requiring supermodularity assumptions.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1023/A:1022690009338</identifier><identifier>CODEN: JOTABN</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Applied sciences ; Economics ; Exact sciences and technology ; General aspects ; Growth models ; Operational research and scientific management ; Operational research. Management science ; Optimization. Search problems</subject><ispartof>Journal of optimization theory and applications, 1998-06, Vol.97 (3), p.591-604</ispartof><rights>1998 INIST-CNRS</rights><rights>Plenum Publishing Corporation 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-ceb632178b71d6c97b58d9202beba9b1177c9354fe8c7aaba37b0836dc9b0a03</citedby><cites>FETCH-LOGICAL-c327t-ceb632178b71d6c97b58d9202beba9b1177c9354fe8c7aaba37b0836dc9b0a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/196613843/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/196613843?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2273564$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ASKRI, K</creatorcontrib><creatorcontrib>LE VAN, C</creatorcontrib><title>Differentiability of the value function of nonclassical optimal growth models</title><title>Journal of optimization theory and applications</title><description>We consider an optimal growth (multi-sector) model with nonconvex technology. Using the Clarke results on generalized gradients, we prove that the value function has left and right derivatives with respect to the initial capital stock, without requiring supermodularity assumptions.</description><subject>Applied sciences</subject><subject>Economics</subject><subject>Exact sciences and technology</subject><subject>General aspects</subject><subject>Growth models</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization. Search problems</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkEtLAzEUhYMoWKtrt4MIrsYmuTN5uCv1CRU33YckzdiU6aQmM0r_vSkVQVcH7v3OfRyELgm-JZjCZHqXhTKJMZYA4giNSM2hpIKLYzTCuVcCBXmKzlJa7yHBqxF6vfdN46Lreq-Nb32_K0JT9CtXfOp2cEUzdLb3odtXu9DZVqfkrW6LsO39Jut7DF_9qtiEpWvTOTppdJvcxY-O0eLxYTF7LudvTy-z6by0QHlfWmcYUMKF4WTJrOSmFktJMTXOaGkI4dxKqKvGCcu1Nhq4wQLY0kqDNYYxujmM3cbwMbjUq41P1rWt7lwYkuIVsJpVVZ3Jq3_kOgyxy7cpIhkjICrI0OQA2RhSiq5R25h_iztFsNpnq6bqT7bZcf0zVqccRhN1Z336tVHKIe-Hb_ipeME</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>ASKRI, K</creator><creator>LE VAN, C</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>19980601</creationdate><title>Differentiability of the value function of nonclassical optimal growth models</title><author>ASKRI, K ; LE VAN, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-ceb632178b71d6c97b58d9202beba9b1177c9354fe8c7aaba37b0836dc9b0a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Economics</topic><topic>Exact sciences and technology</topic><topic>General aspects</topic><topic>Growth models</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization. Search problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ASKRI, K</creatorcontrib><creatorcontrib>LE VAN, C</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ASKRI, K</au><au>LE VAN, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentiability of the value function of nonclassical optimal growth models</atitle><jtitle>Journal of optimization theory and applications</jtitle><date>1998-06-01</date><risdate>1998</risdate><volume>97</volume><issue>3</issue><spage>591</spage><epage>604</epage><pages>591-604</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><coden>JOTABN</coden><abstract>We consider an optimal growth (multi-sector) model with nonconvex technology. Using the Clarke results on generalized gradients, we prove that the value function has left and right derivatives with respect to the initial capital stock, without requiring supermodularity assumptions.</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1023/A:1022690009338</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 1998-06, Vol.97 (3), p.591-604 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_miscellaneous_743656445 |
source | ABI/INFORM global; Springer Nature |
subjects | Applied sciences Economics Exact sciences and technology General aspects Growth models Operational research and scientific management Operational research. Management science Optimization. Search problems |
title | Differentiability of the value function of nonclassical optimal growth models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentiability%20of%20the%20value%20function%20of%20nonclassical%20optimal%20growth%20models&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=ASKRI,%20K&rft.date=1998-06-01&rft.volume=97&rft.issue=3&rft.spage=591&rft.epage=604&rft.pages=591-604&rft.issn=0022-3239&rft.eissn=1573-2878&rft.coden=JOTABN&rft_id=info:doi/10.1023/A:1022690009338&rft_dat=%3Cproquest_cross%3E743656445%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-ceb632178b71d6c97b58d9202beba9b1177c9354fe8c7aaba37b0836dc9b0a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=196613843&rft_id=info:pmid/&rfr_iscdi=true |