Loading…

A low-temperature origin for the planetesimals that formed Jupiter

The four giant planets in the Solar System have abundances of 'metals' (elements heavier than helium), relative to hydrogen, that are much higher than observed in the Sun. In order to explain this, all models for the formation of these planets rely on an influx of solid planetesimals. It i...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 1999-11, Vol.402 (6759), p.269-270
Main Authors: Owen, Tobias, Mahaffy, Paul, Niemann, H. B, Atreya, Sushil, Donahue, Thomas, Bar-Nun, Akiva, de Pater, Imke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The four giant planets in the Solar System have abundances of 'metals' (elements heavier than helium), relative to hydrogen, that are much higher than observed in the Sun. In order to explain this, all models for the formation of these planets rely on an influx of solid planetesimals. It is generally assumed that these planetesimals were similar, if not identical, to the comets from the Oort cloud that we see today. Comets that formed in the region of the giant planets should not have contained much neon, argon and nitrogen, because the temperatures were too high for these volatile gases to be trapped effectively in ice. This means that the abundances of those elements on the giant planets should be approximately solar. Here we show that argon, krypton and xenon in Jupiter's atmosphere are enriched to the same extent as the other heavy elements, which suggests that the planetesimals carrying these elements must have formed at temperatures lower than predicted by present models of giant-planet formation.
ISSN:0028-0836
1476-4687
DOI:10.1038/46232