Loading…
An examination of the mechanical interaction of drilling slurries at the soil-concrete contact
Evidence gained from previous field tests conducted on drilled shaft foundation shows that using drilling slurries to stabilize a borehole during the construction may influence the interfacial shear strength. This paper deals with an exhaustive study of the effects of drilling slurries at the contac...
Saved in:
Published in: | Journal of Zhejiang University. A. Science 2010-04, Vol.11 (4), p.294-304 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Evidence gained from previous field tests conducted on drilled shaft foundation shows that using drilling slurries to stabilize a borehole during the construction may influence the interfacial shear strength. This paper deals with an exhaustive study of the effects of drilling slurries at the contact between soil and concrete. This study involved adapting a simple shear apparatus and performing approximately 100 experimental tests on the interaction between two types of soils; clay and sandy clay and five specimens of concrete with different surface shapes. It also involved using bentonite and polymer slurries as an interface layer between soil and concrete. Results showed that an interface layer of bentonite slurry between clay and concrete decreases the interfacial shear strength by 23% and as an interface layer between sandy clay and concrete, bentonite increases interfacial shear strength by 10%. Using polymer slurry as an interface layer between clay and concrete decreases the interfacial shear strength by 17% while using it as an interface layer between sandy clay and concrete increases the interfacial shear strength by 10%. Fur- thermore, the data show that using bentonite and polymer slurry as an interface layer between clay and concrete decreases the sliding ratio by 50% to 60%, while increasing the sliding ratio by 44% to 56% when these are used as an interface layer between sandy clay and concrete. |
---|---|
ISSN: | 1673-565X 1862-1775 |
DOI: | 10.1631/jzus.A0900456 |