Loading…
Optimizations for quadrature representations of finite element tensors through automated code generation
We examine aspects of the computation of finite element matrices and vectors that are made possible by automated code generation. Given a variational form in a syntax that resembles standard mathematical notation, the low-level computer code for building finite element tensors, typically matrices, v...
Saved in:
Published in: | ACM transactions on mathematical software 2010-01, Vol.37 (1), p.1-23 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c273t-fe1251e9ab26099921c17be6a4fe924d98d963627094f9a407bbf3ab7d3916c53 |
---|---|
cites | cdi_FETCH-LOGICAL-c273t-fe1251e9ab26099921c17be6a4fe924d98d963627094f9a407bbf3ab7d3916c53 |
container_end_page | 23 |
container_issue | 1 |
container_start_page | 1 |
container_title | ACM transactions on mathematical software |
container_volume | 37 |
creator | Ølgaard, Kristian B. Wells, Garth N. |
description | We examine aspects of the computation of finite element matrices and vectors that are made possible by automated code generation. Given a variational form in a syntax that resembles standard mathematical notation, the low-level computer code for building finite element tensors, typically matrices, vectors and scalars, can be generated automatically via a form compiler. In particular, the generation of code for computing finite element matrices using a quadrature approach is addressed. For quadrature representations, a number of optimization strategies which are made possible by automated code generation are presented. The relative performance of two different automatically generated representations of finite element matrices is examined, with a particular emphasis on complicated variational forms. It is shown that approaches which perform best for simple forms are not tractable for more complicated problems in terms of run-time performance, the time required to generate the code or the size of the generated code. The approach and optimizations elaborated here are effective for a range of variational forms. |
doi_str_mv | 10.1145/1644001.1644009 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743731583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743731583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-fe1251e9ab26099921c17be6a4fe924d98d963627094f9a407bbf3ab7d3916c53</originalsourceid><addsrcrecordid>eNotkDtPwzAUhS0EEqUws3pjCvX1I65HVPGSKnWBOXKS69YoiVPbGeDXU2imTzqv4RByD-wRQKoVlFIyBo9nmguyAKV0oblRl2RxUtaFUIxdk5uUvhhjHDQsyGE3Zt_7H5t9GBJ1IdLjZNto8xSRRhwjJhzybAdHnR98Rood9iedZhxSiInmQwzT_kDtlENvM7a0CS3SPQ4Y_8u35MrZLuHdzCX5fHn-2LwV293r--ZpWzRci1w4BK4Aja15yYwxHBrQNZZWOjRctmbdmlKUXDMjnbGS6bp2wta6FQbKRokleTjvjjEcJ0y56n1qsOvsgGFKlZZCC1BrcUquzskmhpQiumqMvrfxuwJW_V1azZfONOIXCbxrQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743731583</pqid></control><display><type>article</type><title>Optimizations for quadrature representations of finite element tensors through automated code generation</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Ølgaard, Kristian B. ; Wells, Garth N.</creator><creatorcontrib>Ølgaard, Kristian B. ; Wells, Garth N.</creatorcontrib><description>We examine aspects of the computation of finite element matrices and vectors that are made possible by automated code generation. Given a variational form in a syntax that resembles standard mathematical notation, the low-level computer code for building finite element tensors, typically matrices, vectors and scalars, can be generated automatically via a form compiler. In particular, the generation of code for computing finite element matrices using a quadrature approach is addressed. For quadrature representations, a number of optimization strategies which are made possible by automated code generation are presented. The relative performance of two different automatically generated representations of finite element matrices is examined, with a particular emphasis on complicated variational forms. It is shown that approaches which perform best for simple forms are not tractable for more complicated problems in terms of run-time performance, the time required to generate the code or the size of the generated code. The approach and optimizations elaborated here are effective for a range of variational forms.</description><identifier>ISSN: 0098-3500</identifier><identifier>EISSN: 1557-7295</identifier><identifier>DOI: 10.1145/1644001.1644009</identifier><language>eng</language><ispartof>ACM transactions on mathematical software, 2010-01, Vol.37 (1), p.1-23</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-fe1251e9ab26099921c17be6a4fe924d98d963627094f9a407bbf3ab7d3916c53</citedby><cites>FETCH-LOGICAL-c273t-fe1251e9ab26099921c17be6a4fe924d98d963627094f9a407bbf3ab7d3916c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ølgaard, Kristian B.</creatorcontrib><creatorcontrib>Wells, Garth N.</creatorcontrib><title>Optimizations for quadrature representations of finite element tensors through automated code generation</title><title>ACM transactions on mathematical software</title><description>We examine aspects of the computation of finite element matrices and vectors that are made possible by automated code generation. Given a variational form in a syntax that resembles standard mathematical notation, the low-level computer code for building finite element tensors, typically matrices, vectors and scalars, can be generated automatically via a form compiler. In particular, the generation of code for computing finite element matrices using a quadrature approach is addressed. For quadrature representations, a number of optimization strategies which are made possible by automated code generation are presented. The relative performance of two different automatically generated representations of finite element matrices is examined, with a particular emphasis on complicated variational forms. It is shown that approaches which perform best for simple forms are not tractable for more complicated problems in terms of run-time performance, the time required to generate the code or the size of the generated code. The approach and optimizations elaborated here are effective for a range of variational forms.</description><issn>0098-3500</issn><issn>1557-7295</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotkDtPwzAUhS0EEqUws3pjCvX1I65HVPGSKnWBOXKS69YoiVPbGeDXU2imTzqv4RByD-wRQKoVlFIyBo9nmguyAKV0oblRl2RxUtaFUIxdk5uUvhhjHDQsyGE3Zt_7H5t9GBJ1IdLjZNto8xSRRhwjJhzybAdHnR98Rood9iedZhxSiInmQwzT_kDtlENvM7a0CS3SPQ4Y_8u35MrZLuHdzCX5fHn-2LwV293r--ZpWzRci1w4BK4Aja15yYwxHBrQNZZWOjRctmbdmlKUXDMjnbGS6bp2wta6FQbKRokleTjvjjEcJ0y56n1qsOvsgGFKlZZCC1BrcUquzskmhpQiumqMvrfxuwJW_V1azZfONOIXCbxrQw</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Ølgaard, Kristian B.</creator><creator>Wells, Garth N.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201001</creationdate><title>Optimizations for quadrature representations of finite element tensors through automated code generation</title><author>Ølgaard, Kristian B. ; Wells, Garth N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-fe1251e9ab26099921c17be6a4fe924d98d963627094f9a407bbf3ab7d3916c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ølgaard, Kristian B.</creatorcontrib><creatorcontrib>Wells, Garth N.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on mathematical software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ølgaard, Kristian B.</au><au>Wells, Garth N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizations for quadrature representations of finite element tensors through automated code generation</atitle><jtitle>ACM transactions on mathematical software</jtitle><date>2010-01</date><risdate>2010</risdate><volume>37</volume><issue>1</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><issn>0098-3500</issn><eissn>1557-7295</eissn><abstract>We examine aspects of the computation of finite element matrices and vectors that are made possible by automated code generation. Given a variational form in a syntax that resembles standard mathematical notation, the low-level computer code for building finite element tensors, typically matrices, vectors and scalars, can be generated automatically via a form compiler. In particular, the generation of code for computing finite element matrices using a quadrature approach is addressed. For quadrature representations, a number of optimization strategies which are made possible by automated code generation are presented. The relative performance of two different automatically generated representations of finite element matrices is examined, with a particular emphasis on complicated variational forms. It is shown that approaches which perform best for simple forms are not tractable for more complicated problems in terms of run-time performance, the time required to generate the code or the size of the generated code. The approach and optimizations elaborated here are effective for a range of variational forms.</abstract><doi>10.1145/1644001.1644009</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-3500 |
ispartof | ACM transactions on mathematical software, 2010-01, Vol.37 (1), p.1-23 |
issn | 0098-3500 1557-7295 |
language | eng |
recordid | cdi_proquest_miscellaneous_743731583 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
title | Optimizations for quadrature representations of finite element tensors through automated code generation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizations%20for%20quadrature%20representations%20of%20finite%20element%20tensors%20through%20automated%20code%20generation&rft.jtitle=ACM%20transactions%20on%20mathematical%20software&rft.au=%C3%98lgaard,%20Kristian%20B.&rft.date=2010-01&rft.volume=37&rft.issue=1&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.issn=0098-3500&rft.eissn=1557-7295&rft_id=info:doi/10.1145/1644001.1644009&rft_dat=%3Cproquest_cross%3E743731583%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-fe1251e9ab26099921c17be6a4fe924d98d963627094f9a407bbf3ab7d3916c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=743731583&rft_id=info:pmid/&rfr_iscdi=true |