Loading…
Review of Pixel-Level Image Fusion
Image fusion can be performed at different levels: signal, pixel, feature and symbol levels. Almost all image fusion algorithms developed to date fall into pixel level. This paper provides an overview of the most widely used pixel-level image fusion algorithms and some comments about their relative...
Saved in:
Published in: | Shanghai jiao tong da xue xue bao 2010-02, Vol.15 (1), p.6-12 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c262y-705ce135796c9cbb9b65335dc3e9282d2b1f7dce01f4e77b714ebe0d259593a23 |
---|---|
cites | cdi_FETCH-LOGICAL-c262y-705ce135796c9cbb9b65335dc3e9282d2b1f7dce01f4e77b714ebe0d259593a23 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 6 |
container_title | Shanghai jiao tong da xue xue bao |
container_volume | 15 |
creator | 杨波 敬忠良 赵海涛 |
description | Image fusion can be performed at different levels: signal, pixel, feature and symbol levels. Almost all image fusion algorithms developed to date fall into pixel level. This paper provides an overview of the most widely used pixel-level image fusion algorithms and some comments about their relative strengths and weaknesses. Particular emphasis is placed on multiscale-based methods. Some performance measures practicable for pixel-level image fusion are also discussed. At last, prospects of pixel-level image fusion are made. |
doi_str_mv | 10.1007/s12204-010-7186-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743740764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>32928366</cqvip_id><sourcerecordid>743740764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262y-705ce135796c9cbb9b65335dc3e9282d2b1f7dce01f4e77b714ebe0d259593a23</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAeyiblgZPH7GS1TxqFQJhGBtJc6kpKRJG5NC_h5X6ZrVzOKcGd1LyDWwW2DM3AXgnEnKgFEDqabDCZmAtYqmkKancY8QBTD8nFyEsGZMMiHshMzecF_hT9KWyWv1izVd4h7rZLHJVpg89qFqm0tyVmZ1wKvjnJKPx4f3-TNdvjwt5vdL6rnmAzVMeQShjNXe-jy3uVZCqMILtDzlBc-hNIVHBqVEY3IDEnNkBVdWWZFxMSU3491t1-56DN9uUwWPdZ012PbBGSmMZEbLSMJI-q4NocPSbbtqk3WDA-YOSd1Yh4t1uEMdbogOH50Q2WaFnVu3fdfEQP9Ks-Ojz7ZZ7aLn8sx_lVWNTvAYS2gt_gCcYGxb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743740764</pqid></control><display><type>article</type><title>Review of Pixel-Level Image Fusion</title><source>Springer Nature</source><creator>杨波 敬忠良 赵海涛</creator><creatorcontrib>杨波 敬忠良 赵海涛</creatorcontrib><description>Image fusion can be performed at different levels: signal, pixel, feature and symbol levels. Almost all image fusion algorithms developed to date fall into pixel level. This paper provides an overview of the most widely used pixel-level image fusion algorithms and some comments about their relative strengths and weaknesses. Particular emphasis is placed on multiscale-based methods. Some performance measures practicable for pixel-level image fusion are also discussed. At last, prospects of pixel-level image fusion are made.</description><identifier>ISSN: 1007-1172</identifier><identifier>EISSN: 1995-8188</identifier><identifier>DOI: 10.1007/s12204-010-7186-y</identifier><language>eng</language><publisher>Heidelberg: Shanghai Jiaotong University Press</publisher><subject>Architecture ; Computer Science ; Electrical Engineering ; Engineering ; Life Sciences ; Materials Science ; 像素水平 ; 像素级 ; 图像融合算法 ; 多尺度 ; 相对优势</subject><ispartof>Shanghai jiao tong da xue xue bao, 2010-02, Vol.15 (1), p.6-12</ispartof><rights>Shanghai Jiaotong University and Springer Berlin Heidelberg 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c262y-705ce135796c9cbb9b65335dc3e9282d2b1f7dce01f4e77b714ebe0d259593a23</citedby><cites>FETCH-LOGICAL-c262y-705ce135796c9cbb9b65335dc3e9282d2b1f7dce01f4e77b714ebe0d259593a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85391X/85391X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>杨波 敬忠良 赵海涛</creatorcontrib><title>Review of Pixel-Level Image Fusion</title><title>Shanghai jiao tong da xue xue bao</title><addtitle>J. Shanghai Jiaotong Univ. (Sci.)</addtitle><addtitle>Journal of Shanghai Jiaotong university</addtitle><description>Image fusion can be performed at different levels: signal, pixel, feature and symbol levels. Almost all image fusion algorithms developed to date fall into pixel level. This paper provides an overview of the most widely used pixel-level image fusion algorithms and some comments about their relative strengths and weaknesses. Particular emphasis is placed on multiscale-based methods. Some performance measures practicable for pixel-level image fusion are also discussed. At last, prospects of pixel-level image fusion are made.</description><subject>Architecture</subject><subject>Computer Science</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Life Sciences</subject><subject>Materials Science</subject><subject>像素水平</subject><subject>像素级</subject><subject>图像融合算法</subject><subject>多尺度</subject><subject>相对优势</subject><issn>1007-1172</issn><issn>1995-8188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAeyiblgZPH7GS1TxqFQJhGBtJc6kpKRJG5NC_h5X6ZrVzOKcGd1LyDWwW2DM3AXgnEnKgFEDqabDCZmAtYqmkKancY8QBTD8nFyEsGZMMiHshMzecF_hT9KWyWv1izVd4h7rZLHJVpg89qFqm0tyVmZ1wKvjnJKPx4f3-TNdvjwt5vdL6rnmAzVMeQShjNXe-jy3uVZCqMILtDzlBc-hNIVHBqVEY3IDEnNkBVdWWZFxMSU3491t1-56DN9uUwWPdZ012PbBGSmMZEbLSMJI-q4NocPSbbtqk3WDA-YOSd1Yh4t1uEMdbogOH50Q2WaFnVu3fdfEQP9Ks-Ojz7ZZ7aLn8sx_lVWNTvAYS2gt_gCcYGxb</recordid><startdate>201002</startdate><enddate>201002</enddate><creator>杨波 敬忠良 赵海涛</creator><general>Shanghai Jiaotong University Press</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201002</creationdate><title>Review of Pixel-Level Image Fusion</title><author>杨波 敬忠良 赵海涛</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262y-705ce135796c9cbb9b65335dc3e9282d2b1f7dce01f4e77b714ebe0d259593a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Architecture</topic><topic>Computer Science</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Life Sciences</topic><topic>Materials Science</topic><topic>像素水平</topic><topic>像素级</topic><topic>图像融合算法</topic><topic>多尺度</topic><topic>相对优势</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>杨波 敬忠良 赵海涛</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Shanghai jiao tong da xue xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>杨波 敬忠良 赵海涛</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review of Pixel-Level Image Fusion</atitle><jtitle>Shanghai jiao tong da xue xue bao</jtitle><stitle>J. Shanghai Jiaotong Univ. (Sci.)</stitle><addtitle>Journal of Shanghai Jiaotong university</addtitle><date>2010-02</date><risdate>2010</risdate><volume>15</volume><issue>1</issue><spage>6</spage><epage>12</epage><pages>6-12</pages><issn>1007-1172</issn><eissn>1995-8188</eissn><abstract>Image fusion can be performed at different levels: signal, pixel, feature and symbol levels. Almost all image fusion algorithms developed to date fall into pixel level. This paper provides an overview of the most widely used pixel-level image fusion algorithms and some comments about their relative strengths and weaknesses. Particular emphasis is placed on multiscale-based methods. Some performance measures practicable for pixel-level image fusion are also discussed. At last, prospects of pixel-level image fusion are made.</abstract><cop>Heidelberg</cop><pub>Shanghai Jiaotong University Press</pub><doi>10.1007/s12204-010-7186-y</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-1172 |
ispartof | Shanghai jiao tong da xue xue bao, 2010-02, Vol.15 (1), p.6-12 |
issn | 1007-1172 1995-8188 |
language | eng |
recordid | cdi_proquest_miscellaneous_743740764 |
source | Springer Nature |
subjects | Architecture Computer Science Electrical Engineering Engineering Life Sciences Materials Science 像素水平 像素级 图像融合算法 多尺度 相对优势 |
title | Review of Pixel-Level Image Fusion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A50%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20of%20Pixel-Level%20Image%20Fusion&rft.jtitle=Shanghai%20jiao%20tong%20da%20xue%20xue%20bao&rft.au=%E6%9D%A8%E6%B3%A2%20%E6%95%AC%E5%BF%A0%E8%89%AF%20%E8%B5%B5%E6%B5%B7%E6%B6%9B&rft.date=2010-02&rft.volume=15&rft.issue=1&rft.spage=6&rft.epage=12&rft.pages=6-12&rft.issn=1007-1172&rft.eissn=1995-8188&rft_id=info:doi/10.1007/s12204-010-7186-y&rft_dat=%3Cproquest_cross%3E743740764%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c262y-705ce135796c9cbb9b65335dc3e9282d2b1f7dce01f4e77b714ebe0d259593a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=743740764&rft_id=info:pmid/&rft_cqvip_id=32928366&rfr_iscdi=true |