Loading…

Spontaneous Emission Spectrum in Double Quantum Dot Devices

A double quantum dot device is a tunable two-level system for electronic energy states. A dc electron current was used to directly measure the rates for elastic and inelastic transitions between the two levels. For inelastic transitions, energy is exchanged with bosonic degrees of freedom in the env...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 1998-10, Vol.282 (5390), p.932-935
Main Authors: Fujisawa, Toshimasa, Oosterkamp, Tjerk H., van der Wiel, Wilfred G., Broer, Benno W., Aguado, Ramón, Tarucha, Seigo, Kouwenhoven, Leo P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c590t-e6278ff03809f88428f2f3a3febd299efd3c50c0d7d5de2ab09d006a752202c03
cites cdi_FETCH-LOGICAL-c590t-e6278ff03809f88428f2f3a3febd299efd3c50c0d7d5de2ab09d006a752202c03
container_end_page 935
container_issue 5390
container_start_page 932
container_title Science (American Association for the Advancement of Science)
container_volume 282
creator Fujisawa, Toshimasa
Oosterkamp, Tjerk H.
van der Wiel, Wilfred G.
Broer, Benno W.
Aguado, Ramón
Tarucha, Seigo
Kouwenhoven, Leo P.
description A double quantum dot device is a tunable two-level system for electronic energy states. A dc electron current was used to directly measure the rates for elastic and inelastic transitions between the two levels. For inelastic transitions, energy is exchanged with bosonic degrees of freedom in the environment. The inelastic transition rates are well described by the Einstein coefficients, relating absorption with stimulated and spontaneous emission. The most effectively coupled bosons in the specific environment of the semiconductor device used here were acoustic phonons. The experiments demonstrate the importance of vacuum fluctuations in the environment for quantum dot devices and potential design constraints for their use for preparing long-lived quantum states.
doi_str_mv 10.1126/science.282.5390.932
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743750842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A53588534</galeid><jstor_id>2897454</jstor_id><sourcerecordid>A53588534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-e6278ff03809f88428f2f3a3febd299efd3c50c0d7d5de2ab09d006a752202c03</originalsourceid><addsrcrecordid>eNp9kd1rFDEUxYNY6lr9DyoMIuhDZ71JJl_4VHbrBxSKVJ9DNnNTZpmdrMlMqf-9KTNU8MGnQM7vHs69h5BzCmtKmfyYfYeDxzXTbC24gbXh7BlZUTCiNgz4c7IC4LLWoMQL8jLnPUDRDD8lp0aZRkm6Ip9uj3EY3YBxytXVocu5i0N1e0Q_pulQdUO1jdOux-r75Iax_GzjWG3xvvOYX5GT4PqMr5f3jPz8fPVj87W-vvnybXN5XXthYKxRMqVDAK7BBK0bpgML3PGAu5YZg6HlXoCHVrWiReZ2YFoA6ZRgDJgHfkbez77HFH9NmEdbcnrs-zm2VQ1XAopxIT_8l6RaGCobIWVB3_6D7uOUhrKHZZQLqaQyBbqYoTvXo-0GX26FD6OPfY93aMuWmxt7KbjQWvCm4M2M-xRzThjsMXUHl35bCvaxM7t0Zktn9rEzWzorY2-WKNPugO3T0FJS0d8tusve9SG5wXf5r7fkYDQv2PmM7fMY05PMtFGNaPgfrN2njw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213567679</pqid></control><display><type>article</type><title>Spontaneous Emission Spectrum in Double Quantum Dot Devices</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Social Science Premium Collection</source><source>Alma/SFX Local Collection</source><source>Education Collection</source><creator>Fujisawa, Toshimasa ; Oosterkamp, Tjerk H. ; van der Wiel, Wilfred G. ; Broer, Benno W. ; Aguado, Ramón ; Tarucha, Seigo ; Kouwenhoven, Leo P.</creator><creatorcontrib>Fujisawa, Toshimasa ; Oosterkamp, Tjerk H. ; van der Wiel, Wilfred G. ; Broer, Benno W. ; Aguado, Ramón ; Tarucha, Seigo ; Kouwenhoven, Leo P.</creatorcontrib><description>A double quantum dot device is a tunable two-level system for electronic energy states. A dc electron current was used to directly measure the rates for elastic and inelastic transitions between the two levels. For inelastic transitions, energy is exchanged with bosonic degrees of freedom in the environment. The inelastic transition rates are well described by the Einstein coefficients, relating absorption with stimulated and spontaneous emission. The most effectively coupled bosons in the specific environment of the semiconductor device used here were acoustic phonons. The experiments demonstrate the importance of vacuum fluctuations in the environment for quantum dot devices and potential design constraints for their use for preparing long-lived quantum states.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.282.5390.932</identifier><identifier>PMID: 9794761</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Society for the Advancement of Science</publisher><subject>Climate ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electric current ; Electric potential ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in interface structures ; Electrons ; Emission spectra ; Energy ; Environment ; Exact sciences and technology ; Phonons ; Physics ; Pollutant emissions ; Quantum dots ; Quantum electronics ; Quantum theory ; Spontaneous emission ; Tunneling ; Tunnels ; Vacuum</subject><ispartof>Science (American Association for the Advancement of Science), 1998-10, Vol.282 (5390), p.932-935</ispartof><rights>Copyright 1998 American Association for the Advancement of Science</rights><rights>1999 INIST-CNRS</rights><rights>COPYRIGHT 1998 American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Oct 30, 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-e6278ff03809f88428f2f3a3febd299efd3c50c0d7d5de2ab09d006a752202c03</citedby><cites>FETCH-LOGICAL-c590t-e6278ff03809f88428f2f3a3febd299efd3c50c0d7d5de2ab09d006a752202c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/213567679/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/213567679?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,2884,2885,21378,21394,27924,27925,33611,33612,33877,33878,43733,43880,58238,58471,74221,74397</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1630983$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9794761$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujisawa, Toshimasa</creatorcontrib><creatorcontrib>Oosterkamp, Tjerk H.</creatorcontrib><creatorcontrib>van der Wiel, Wilfred G.</creatorcontrib><creatorcontrib>Broer, Benno W.</creatorcontrib><creatorcontrib>Aguado, Ramón</creatorcontrib><creatorcontrib>Tarucha, Seigo</creatorcontrib><creatorcontrib>Kouwenhoven, Leo P.</creatorcontrib><title>Spontaneous Emission Spectrum in Double Quantum Dot Devices</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>A double quantum dot device is a tunable two-level system for electronic energy states. A dc electron current was used to directly measure the rates for elastic and inelastic transitions between the two levels. For inelastic transitions, energy is exchanged with bosonic degrees of freedom in the environment. The inelastic transition rates are well described by the Einstein coefficients, relating absorption with stimulated and spontaneous emission. The most effectively coupled bosons in the specific environment of the semiconductor device used here were acoustic phonons. The experiments demonstrate the importance of vacuum fluctuations in the environment for quantum dot devices and potential design constraints for their use for preparing long-lived quantum states.</description><subject>Climate</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electric current</subject><subject>Electric potential</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in interface structures</subject><subject>Electrons</subject><subject>Emission spectra</subject><subject>Energy</subject><subject>Environment</subject><subject>Exact sciences and technology</subject><subject>Phonons</subject><subject>Physics</subject><subject>Pollutant emissions</subject><subject>Quantum dots</subject><subject>Quantum electronics</subject><subject>Quantum theory</subject><subject>Spontaneous emission</subject><subject>Tunneling</subject><subject>Tunnels</subject><subject>Vacuum</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>CJNVE</sourceid><sourceid>M0P</sourceid><recordid>eNp9kd1rFDEUxYNY6lr9DyoMIuhDZ71JJl_4VHbrBxSKVJ9DNnNTZpmdrMlMqf-9KTNU8MGnQM7vHs69h5BzCmtKmfyYfYeDxzXTbC24gbXh7BlZUTCiNgz4c7IC4LLWoMQL8jLnPUDRDD8lp0aZRkm6Ip9uj3EY3YBxytXVocu5i0N1e0Q_pulQdUO1jdOux-r75Iax_GzjWG3xvvOYX5GT4PqMr5f3jPz8fPVj87W-vvnybXN5XXthYKxRMqVDAK7BBK0bpgML3PGAu5YZg6HlXoCHVrWiReZ2YFoA6ZRgDJgHfkbez77HFH9NmEdbcnrs-zm2VQ1XAopxIT_8l6RaGCobIWVB3_6D7uOUhrKHZZQLqaQyBbqYoTvXo-0GX26FD6OPfY93aMuWmxt7KbjQWvCm4M2M-xRzThjsMXUHl35bCvaxM7t0Zktn9rEzWzorY2-WKNPugO3T0FJS0d8tusve9SG5wXf5r7fkYDQv2PmM7fMY05PMtFGNaPgfrN2njw</recordid><startdate>19981030</startdate><enddate>19981030</enddate><creator>Fujisawa, Toshimasa</creator><creator>Oosterkamp, Tjerk H.</creator><creator>van der Wiel, Wilfred G.</creator><creator>Broer, Benno W.</creator><creator>Aguado, Ramón</creator><creator>Tarucha, Seigo</creator><creator>Kouwenhoven, Leo P.</creator><general>American Society for the Advancement of Science</general><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88B</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9-</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M0P</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19981030</creationdate><title>Spontaneous Emission Spectrum in Double Quantum Dot Devices</title><author>Fujisawa, Toshimasa ; Oosterkamp, Tjerk H. ; van der Wiel, Wilfred G. ; Broer, Benno W. ; Aguado, Ramón ; Tarucha, Seigo ; Kouwenhoven, Leo P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-e6278ff03809f88428f2f3a3febd299efd3c50c0d7d5de2ab09d006a752202c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Climate</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electric current</topic><topic>Electric potential</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in interface structures</topic><topic>Electrons</topic><topic>Emission spectra</topic><topic>Energy</topic><topic>Environment</topic><topic>Exact sciences and technology</topic><topic>Phonons</topic><topic>Physics</topic><topic>Pollutant emissions</topic><topic>Quantum dots</topic><topic>Quantum electronics</topic><topic>Quantum theory</topic><topic>Spontaneous emission</topic><topic>Tunneling</topic><topic>Tunnels</topic><topic>Vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujisawa, Toshimasa</creatorcontrib><creatorcontrib>Oosterkamp, Tjerk H.</creatorcontrib><creatorcontrib>van der Wiel, Wilfred G.</creatorcontrib><creatorcontrib>Broer, Benno W.</creatorcontrib><creatorcontrib>Aguado, Ramón</creatorcontrib><creatorcontrib>Tarucha, Seigo</creatorcontrib><creatorcontrib>Kouwenhoven, Leo P.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medicine (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agriculture Science Database</collection><collection>Education Database</collection><collection>Family Health Database (ProQuest)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujisawa, Toshimasa</au><au>Oosterkamp, Tjerk H.</au><au>van der Wiel, Wilfred G.</au><au>Broer, Benno W.</au><au>Aguado, Ramón</au><au>Tarucha, Seigo</au><au>Kouwenhoven, Leo P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spontaneous Emission Spectrum in Double Quantum Dot Devices</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1998-10-30</date><risdate>1998</risdate><volume>282</volume><issue>5390</issue><spage>932</spage><epage>935</epage><pages>932-935</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>A double quantum dot device is a tunable two-level system for electronic energy states. A dc electron current was used to directly measure the rates for elastic and inelastic transitions between the two levels. For inelastic transitions, energy is exchanged with bosonic degrees of freedom in the environment. The inelastic transition rates are well described by the Einstein coefficients, relating absorption with stimulated and spontaneous emission. The most effectively coupled bosons in the specific environment of the semiconductor device used here were acoustic phonons. The experiments demonstrate the importance of vacuum fluctuations in the environment for quantum dot devices and potential design constraints for their use for preparing long-lived quantum states.</abstract><cop>Washington, DC</cop><pub>American Society for the Advancement of Science</pub><pmid>9794761</pmid><doi>10.1126/science.282.5390.932</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 1998-10, Vol.282 (5390), p.932-935
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_743750842
source American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection; Social Science Premium Collection; Alma/SFX Local Collection; Education Collection
subjects Climate
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Electric current
Electric potential
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport in interface structures
Electrons
Emission spectra
Energy
Environment
Exact sciences and technology
Phonons
Physics
Pollutant emissions
Quantum dots
Quantum electronics
Quantum theory
Spontaneous emission
Tunneling
Tunnels
Vacuum
title Spontaneous Emission Spectrum in Double Quantum Dot Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spontaneous%20Emission%20Spectrum%20in%20Double%20Quantum%20Dot%20Devices&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Fujisawa,%20Toshimasa&rft.date=1998-10-30&rft.volume=282&rft.issue=5390&rft.spage=932&rft.epage=935&rft.pages=932-935&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.282.5390.932&rft_dat=%3Cgale_proqu%3EA53588534%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c590t-e6278ff03809f88428f2f3a3febd299efd3c50c0d7d5de2ab09d006a752202c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213567679&rft_id=info:pmid/9794761&rft_galeid=A53588534&rft_jstor_id=2897454&rfr_iscdi=true