Loading…
Evolutionary decision-makings for the dynamic weapon-target assignment problem
The dynamic weapon-target assignment (DWTA) problem is an important issue in the field of military command and control. An asset-based DWTA optimization model was proposed with four kinds of constraints considered, including capability constraints, strategy constraints, resource constraints and enga...
Saved in:
Published in: | Science China. Information sciences 2009-11, Vol.52 (11), p.2006-2018 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The dynamic weapon-target assignment (DWTA) problem is an important issue in the field of military command and control. An asset-based DWTA optimization model was proposed with four kinds of constraints considered, including capability constraints, strategy constraints, resource constraints and engagement feasibility constraints. A general "virtual" representation of decisions was presented to facilitate the generation of feasible decisions. The representation is in essence the permutation of all assignment pairs. A construction procedure converts the permutations into real feasible decisions. In order to solve this problem, three evolutionary decision-making algorithms, including a genetic algorithm and two memetic algorithms, were developed. Experimental results show that the memetic algorithm based on greedy local search can generate obviously better DWTA decisions, especially for large-scale problems, than the genetic algorithm and the memetic algorithm based on steepest local search. |
---|---|
ISSN: | 1009-2757 1674-733X 1862-2836 1869-1919 |
DOI: | 10.1007/s11432-009-0190-x |