Loading…

Thermomechanics of rubber at small strains

A reduced variable, linear thermoelastic constitutive equation for rubber at small strains is obtained from classical linear thermoelasticity and empirical observations about the stress-temperature behaviour of real elastomers at fixed strain. In contrast to the statistical theory of rubber elastici...

Full description

Saved in:
Bibliographic Details
Published in:Polymer (Guilford) 1987-06, Vol.28 (7), p.1127-1132
Main Authors: Lyon, R.E., Farris, R.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c463t-772b4051952fefcc4634d9379663cf16f6fd8649e74b220fa1fec630a3c0dd0f3
cites cdi_FETCH-LOGICAL-c463t-772b4051952fefcc4634d9379663cf16f6fd8649e74b220fa1fec630a3c0dd0f3
container_end_page 1132
container_issue 7
container_start_page 1127
container_title Polymer (Guilford)
container_volume 28
creator Lyon, R.E.
Farris, R.J.
description A reduced variable, linear thermoelastic constitutive equation for rubber at small strains is obtained from classical linear thermoelasticity and empirical observations about the stress-temperature behaviour of real elastomers at fixed strain. In contrast to the statistical theory of rubber elasticity, volume changes are recognized explicitly in the three constant equation of state. This formulation leads to self-consistent, quantitative predictions of the thermoelastic inversion and internal energy changes with deformation which support the basic tenets of the statistical theory.
doi_str_mv 10.1016/0032-3861(87)90254-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744563614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0032386187902540</els_id><sourcerecordid>744563614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-772b4051952fefcc4634d9379663cf16f6fd8649e74b220fa1fec630a3c0dd0f3</originalsourceid><addsrcrecordid>eNqN0MtKAzEUgOEgCtbqG7iYhXiD0ZPLJJmNIMUbFNzUdchkEhqZS02mgm9vxpYui6tA-M4J-RE6x3CHAfN7AEpyKjm-luKmBFKwHA7QBEtBc0JKfIgmO3KMTmL8BEiKsAm6XSxtaPvWmqXuvIlZ77KwriobMj1ksdVNk8UhaN_FU3TkdBPt2facoo_np8XsNZ-_v7zNHue5YZwOuRCkYlDgsiDOOjNesrqkouScGoe5466WnJVWsIoQcBo7azgFTQ3UNTg6RVebvavQf61tHFTro7FNozvbr6MSjBWccsySvNwrCRPpk_J_EIPkCbINNKGPMVinVsG3OvwoDGpsrcaQagyppFB_rRWksYvtfh2NblzQnfFxNyuTZwVJ7GHDbMr37W1Q0XjbGVv7YM2g6t7vf-cXlMCQJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24751086</pqid></control><display><type>article</type><title>Thermomechanics of rubber at small strains</title><source>Backfile Package - Materials Science [YMS]</source><creator>Lyon, R.E. ; Farris, R.J.</creator><creatorcontrib>Lyon, R.E. ; Farris, R.J.</creatorcontrib><description>A reduced variable, linear thermoelastic constitutive equation for rubber at small strains is obtained from classical linear thermoelasticity and empirical observations about the stress-temperature behaviour of real elastomers at fixed strain. In contrast to the statistical theory of rubber elasticity, volume changes are recognized explicitly in the three constant equation of state. This formulation leads to self-consistent, quantitative predictions of the thermoelastic inversion and internal energy changes with deformation which support the basic tenets of the statistical theory.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/0032-3861(87)90254-0</identifier><identifier>CODEN: POLMAG</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; entropy ; Exact sciences and technology ; internal energy ; Organic polymers ; Physicochemistry of polymers ; Properties and characterization ; rubber ; rubber elasticity ; stress strain relations ; thermoelasticity ; thermomechanics</subject><ispartof>Polymer (Guilford), 1987-06, Vol.28 (7), p.1127-1132</ispartof><rights>1987</rights><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-772b4051952fefcc4634d9379663cf16f6fd8649e74b220fa1fec630a3c0dd0f3</citedby><cites>FETCH-LOGICAL-c463t-772b4051952fefcc4634d9379663cf16f6fd8649e74b220fa1fec630a3c0dd0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0032386187902540$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3542,27905,27906,45985</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8386452$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyon, R.E.</creatorcontrib><creatorcontrib>Farris, R.J.</creatorcontrib><title>Thermomechanics of rubber at small strains</title><title>Polymer (Guilford)</title><description>A reduced variable, linear thermoelastic constitutive equation for rubber at small strains is obtained from classical linear thermoelasticity and empirical observations about the stress-temperature behaviour of real elastomers at fixed strain. In contrast to the statistical theory of rubber elasticity, volume changes are recognized explicitly in the three constant equation of state. This formulation leads to self-consistent, quantitative predictions of the thermoelastic inversion and internal energy changes with deformation which support the basic tenets of the statistical theory.</description><subject>Applied sciences</subject><subject>entropy</subject><subject>Exact sciences and technology</subject><subject>internal energy</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Properties and characterization</subject><subject>rubber</subject><subject>rubber elasticity</subject><subject>stress strain relations</subject><subject>thermoelasticity</subject><subject>thermomechanics</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNqN0MtKAzEUgOEgCtbqG7iYhXiD0ZPLJJmNIMUbFNzUdchkEhqZS02mgm9vxpYui6tA-M4J-RE6x3CHAfN7AEpyKjm-luKmBFKwHA7QBEtBc0JKfIgmO3KMTmL8BEiKsAm6XSxtaPvWmqXuvIlZ77KwriobMj1ksdVNk8UhaN_FU3TkdBPt2facoo_np8XsNZ-_v7zNHue5YZwOuRCkYlDgsiDOOjNesrqkouScGoe5466WnJVWsIoQcBo7azgFTQ3UNTg6RVebvavQf61tHFTro7FNozvbr6MSjBWccsySvNwrCRPpk_J_EIPkCbINNKGPMVinVsG3OvwoDGpsrcaQagyppFB_rRWksYvtfh2NblzQnfFxNyuTZwVJ7GHDbMr37W1Q0XjbGVv7YM2g6t7vf-cXlMCQJA</recordid><startdate>19870601</startdate><enddate>19870601</enddate><creator>Lyon, R.E.</creator><creator>Farris, R.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>F28</scope><scope>FR3</scope><scope>7TC</scope></search><sort><creationdate>19870601</creationdate><title>Thermomechanics of rubber at small strains</title><author>Lyon, R.E. ; Farris, R.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-772b4051952fefcc4634d9379663cf16f6fd8649e74b220fa1fec630a3c0dd0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Applied sciences</topic><topic>entropy</topic><topic>Exact sciences and technology</topic><topic>internal energy</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Properties and characterization</topic><topic>rubber</topic><topic>rubber elasticity</topic><topic>stress strain relations</topic><topic>thermoelasticity</topic><topic>thermomechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyon, R.E.</creatorcontrib><creatorcontrib>Farris, R.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyon, R.E.</au><au>Farris, R.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermomechanics of rubber at small strains</atitle><jtitle>Polymer (Guilford)</jtitle><date>1987-06-01</date><risdate>1987</risdate><volume>28</volume><issue>7</issue><spage>1127</spage><epage>1132</epage><pages>1127-1132</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><coden>POLMAG</coden><abstract>A reduced variable, linear thermoelastic constitutive equation for rubber at small strains is obtained from classical linear thermoelasticity and empirical observations about the stress-temperature behaviour of real elastomers at fixed strain. In contrast to the statistical theory of rubber elasticity, volume changes are recognized explicitly in the three constant equation of state. This formulation leads to self-consistent, quantitative predictions of the thermoelastic inversion and internal energy changes with deformation which support the basic tenets of the statistical theory.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0032-3861(87)90254-0</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 1987-06, Vol.28 (7), p.1127-1132
issn 0032-3861
1873-2291
language eng
recordid cdi_proquest_miscellaneous_744563614
source Backfile Package - Materials Science [YMS]
subjects Applied sciences
entropy
Exact sciences and technology
internal energy
Organic polymers
Physicochemistry of polymers
Properties and characterization
rubber
rubber elasticity
stress strain relations
thermoelasticity
thermomechanics
title Thermomechanics of rubber at small strains
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermomechanics%20of%20rubber%20at%20small%20strains&rft.jtitle=Polymer%20(Guilford)&rft.au=Lyon,%20R.E.&rft.date=1987-06-01&rft.volume=28&rft.issue=7&rft.spage=1127&rft.epage=1132&rft.pages=1127-1132&rft.issn=0032-3861&rft.eissn=1873-2291&rft.coden=POLMAG&rft_id=info:doi/10.1016/0032-3861(87)90254-0&rft_dat=%3Cproquest_cross%3E744563614%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-772b4051952fefcc4634d9379663cf16f6fd8649e74b220fa1fec630a3c0dd0f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=24751086&rft_id=info:pmid/&rfr_iscdi=true