Loading…
Fluid Damping and Fluid Stiffness of a Tube Row in Crossflow
Motion-dependent fluid forces acting on a tube array were measured as a function of excitation frequency, excitation amplitude, and flow velocity. Fluid-damping and fluid-stiffness coefficients were obtained from measured motion-dependent fluid forces as a function of reduced flow velocity and excit...
Saved in:
Published in: | Journal of pressure vessel technology 1994-11, Vol.116 (4), p.370-383 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Motion-dependent fluid forces acting on a tube array were measured as a function of excitation frequency, excitation amplitude, and flow velocity. Fluid-damping and fluid-stiffness coefficients were obtained from measured motion-dependent fluid forces as a function of reduced flow velocity and excitation amplitude. The water channel and test setup provide a sound facility for obtaining key coefficients for fluidelastic instability of tube arrays in crossflow. Once the motion-dependent fluid-force coefficients have been measured, a reliable design guideline, based on the unsteady flow theory, can be developed for fluidelastic instability of tube arrays in crossflow. |
---|---|
ISSN: | 0094-9930 1528-8978 |
DOI: | 10.1115/1.2929604 |