Loading…
Wear Studies of Materials for Tubes and Antivibration Bars in Nuclear Steam Generators
Wear occurs as a result of relative motion at the interface of two contacting bodies. In nuclear power steam generators, high flow rates can induce vibration of the tubes resulting in wear damage due to impact and sliding contacts between the tubes and their supports. A research project aiming to ga...
Saved in:
Published in: | Journal of pressure vessel technology 1996-08, Vol.118 (3), p.287-300 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wear occurs as a result of relative motion at the interface of two contacting bodies. In nuclear power steam generators, high flow rates can induce vibration of the tubes resulting in wear damage due to impact and sliding contacts between the tubes and their supports. A research project aiming to gain better understanding of the mechanisms and mechanics involved in vibratory wear and to develop a more versatile predictive wear model was carried out. Combinations of Inconel tubes against flat antivibration bars of 403 SS and electrolytic-chrome plated Inconel 600 were tested under conditions of reciprocating sliding and impacting in water at room temperature and at 250°C. The results show that, depending on the material combinations and he loading conditions, distinctively different wear mechanisms and often drastically different wear rates can occur. |
---|---|
ISSN: | 0094-9930 1528-8978 |
DOI: | 10.1115/1.2842191 |